X-Git-Url: http://git.sourceforge.jp/view?a=blobdiff_plain;f=gcc%2Ftree-flow-inline.h;h=c84964c1cdd205f9942d8226181ef0425fd2ed9f;hb=28bfa791d44b30fa96cc852ad093b0bcf3e9c168;hp=1abf556fccfc121b213809ce3a630df49db2e90f;hpb=c2e9ca381e87bafa3713a864fd9fc2daf80000e2;p=pf3gnuchains%2Fgcc-fork.git diff --git a/gcc/tree-flow-inline.h b/gcc/tree-flow-inline.h index 1abf556fccf..c84964c1cdd 100644 --- a/gcc/tree-flow-inline.h +++ b/gcc/tree-flow-inline.h @@ -1,12 +1,13 @@ /* Inline functions for tree-flow.h - Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc. + Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008 Free Software + Foundation, Inc. Contributed by Diego Novillo This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) +the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, @@ -15,9 +16,8 @@ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to -the Free Software Foundation, 51 Franklin Street, Fifth Floor, -Boston, MA 02110-1301, USA. */ +along with GCC; see the file COPYING3. If not see +. */ #ifndef _TREE_FLOW_INLINE_H #define _TREE_FLOW_INLINE_H 1 @@ -25,6 +25,73 @@ Boston, MA 02110-1301, USA. */ /* Inline functions for manipulating various data structures defined in tree-flow.h. See tree-flow.h for documentation. */ +/* Return true when gimple SSA form was built. + gimple_in_ssa_p is queried by gimplifier in various early stages before SSA + infrastructure is initialized. Check for presence of the datastructures + at first place. */ +static inline bool +gimple_in_ssa_p (const struct function *fun) +{ + return fun && fun->gimple_df && fun->gimple_df->in_ssa_p; +} + +/* 'true' after aliases have been computed (see compute_may_aliases). */ +static inline bool +gimple_aliases_computed_p (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->aliases_computed_p; +} + +/* Addressable variables in the function. If bit I is set, then + REFERENCED_VARS (I) has had its address taken. Note that + CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An + addressable variable is not necessarily call-clobbered (e.g., a + local addressable whose address does not escape) and not all + call-clobbered variables are addressable (e.g., a local static + variable). */ +static inline bitmap +gimple_addressable_vars (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->addressable_vars; +} + +/* Call clobbered variables in the function. If bit I is set, then + REFERENCED_VARS (I) is call-clobbered. */ +static inline bitmap +gimple_call_clobbered_vars (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->call_clobbered_vars; +} + +/* Array of all variables referenced in the function. */ +static inline htab_t +gimple_referenced_vars (const struct function *fun) +{ + if (!fun->gimple_df) + return NULL; + return fun->gimple_df->referenced_vars; +} + +/* Artificial variable used to model the effects of function calls. */ +static inline tree +gimple_global_var (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->global_var; +} + +/* Artificial variable used to model the effects of nonlocal + variables. */ +static inline tree +gimple_nonlocal_all (const struct function *fun) +{ + gcc_assert (fun && fun->gimple_df); + return fun->gimple_df->nonlocal_all; +} + /* Initialize the hashtable iterator HTI to point to hashtable TABLE */ static inline void * @@ -49,7 +116,7 @@ first_htab_element (htab_iterator *hti, htab_t table) or NULL if we have reached the end. */ static inline bool -end_htab_p (htab_iterator *hti) +end_htab_p (const htab_iterator *hti) { if (hti->slot >= hti->limit) return true; @@ -77,19 +144,15 @@ next_htab_element (htab_iterator *hti) static inline tree first_referenced_var (referenced_var_iterator *iter) { - struct int_tree_map *itm; - itm = (struct int_tree_map *) first_htab_element (&iter->hti, - referenced_vars); - if (!itm) - return NULL; - return itm->to; + return (tree) first_htab_element (&iter->hti, + gimple_referenced_vars (cfun)); } /* Return true if we have hit the end of the referenced variables ITER is iterating through. */ static inline bool -end_referenced_vars_p (referenced_var_iterator *iter) +end_referenced_vars_p (const referenced_var_iterator *iter) { return end_htab_p (&iter->hti); } @@ -100,11 +163,7 @@ end_referenced_vars_p (referenced_var_iterator *iter) static inline tree next_referenced_var (referenced_var_iterator *iter) { - struct int_tree_map *itm; - itm = (struct int_tree_map *) next_htab_element (&iter->hti); - if (!itm) - return NULL; - return itm->to; + return (tree) next_htab_element (&iter->hti); } /* Fill up VEC with the variables in the referenced vars hashtable. */ @@ -122,14 +181,17 @@ fill_referenced_var_vec (VEC (tree, heap) **vec) /* Return the variable annotation for T, which must be a _DECL node. Return NULL if the variable annotation doesn't already exist. */ static inline var_ann_t -var_ann (tree t) +var_ann (const_tree t) { - gcc_assert (t); - gcc_assert (DECL_P (t)); - gcc_assert (TREE_CODE (t) != FUNCTION_DECL); - gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN); + var_ann_t ann; + + if (!t->base.ann) + return NULL; + ann = (var_ann_t) t->base.ann; - return (var_ann_t) t->common.ann; + gcc_assert (ann->common.type == VAR_ANN); + + return ann; } /* Return the variable annotation for T, which must be a _DECL node. @@ -144,13 +206,14 @@ get_var_ann (tree var) /* Return the function annotation for T, which must be a FUNCTION_DECL node. Return NULL if the function annotation doesn't already exist. */ static inline function_ann_t -function_ann (tree t) +function_ann (const_tree t) { gcc_assert (t); gcc_assert (TREE_CODE (t) == FUNCTION_DECL); - gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN); + gcc_assert (!t->base.ann + || t->base.ann->common.type == FUNCTION_ANN); - return (function_ann_t) t->common.ann; + return (function_ann_t) t->base.ann; } /* Return the function annotation for T, which must be a FUNCTION_DECL node. @@ -159,9 +222,21 @@ static inline function_ann_t get_function_ann (tree var) { function_ann_t ann = function_ann (var); + gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN); return (ann) ? ann : create_function_ann (var); } +/* Return true if T has a statement annotation attached to it. */ + +static inline bool +has_stmt_ann (tree t) +{ +#ifdef ENABLE_CHECKING + gcc_assert (is_gimple_stmt (t)); +#endif + return t->base.ann && t->base.ann->common.type == STMT_ANN; +} + /* Return the statement annotation for T, which must be a statement node. Return NULL if the statement annotation doesn't exist. */ static inline stmt_ann_t @@ -170,7 +245,8 @@ stmt_ann (tree t) #ifdef ENABLE_CHECKING gcc_assert (is_gimple_stmt (t)); #endif - return (stmt_ann_t) t->common.ann; + gcc_assert (!t->base.ann || t->base.ann->common.type == STMT_ANN); + return (stmt_ann_t) t->base.ann; } /* Return the statement annotation for T, which must be a statement @@ -182,6 +258,41 @@ get_stmt_ann (tree stmt) return (ann) ? ann : create_stmt_ann (stmt); } +/* Set the uid of all non phi function statements. */ +static inline void +set_gimple_stmt_uid (tree stmt, unsigned int uid) +{ + get_stmt_ann (stmt)->uid = uid; +} + +/* Get the uid of all non phi function statements. */ +static inline unsigned int +gimple_stmt_uid (tree stmt) +{ + return get_stmt_ann (stmt)->uid; +} + +/* Get the number of the next statement uid to be allocated. */ +static inline unsigned int +gimple_stmt_max_uid (struct function *fn) +{ + return fn->last_stmt_uid; +} + +/* Set the number of the next statement uid to be allocated. */ +static inline void +set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid) +{ + fn->last_stmt_uid = maxid; +} + +/* Set the number of the next statement uid to be allocated. */ +static inline unsigned int +inc_gimple_stmt_max_uid (struct function *fn) +{ + return fn->last_stmt_uid++; +} + /* Return the annotation type for annotation ANN. */ static inline enum tree_ann_type ann_type (tree_ann_t ann) @@ -202,19 +313,18 @@ bb_for_stmt (tree t) return ann ? ann->bb : NULL; } -/* Return the may_aliases varray for variable VAR, or NULL if it has +/* Return the may_aliases bitmap for variable VAR, or NULL if it has no may aliases. */ -static inline VEC(tree, gc) * -may_aliases (tree var) +static inline bitmap +may_aliases (const_tree var) { - var_ann_t ann = var_ann (var); - return ann ? ann->may_aliases : NULL; + return MTAG_ALIASES (var); } /* Return the line number for EXPR, or return -1 if we have no line number information for it. */ static inline int -get_lineno (tree expr) +get_lineno (const_tree expr) { if (expr == NULL_TREE) return -1; @@ -228,24 +338,6 @@ get_lineno (tree expr) return EXPR_LINENO (expr); } -/* Return the file name for EXPR, or return "???" if we have no - filename information. */ -static inline const char * -get_filename (tree expr) -{ - const char *filename; - if (expr == NULL_TREE) - return "???"; - - if (TREE_CODE (expr) == COMPOUND_EXPR) - expr = TREE_OPERAND (expr, 0); - - if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr))) - return filename; - else - return "???"; -} - /* Return true if T is a noreturn call. */ static inline bool noreturn_call_p (tree t) @@ -265,8 +357,8 @@ mark_stmt_modified (tree t) ann = stmt_ann (t); if (ann == NULL) ann = create_stmt_ann (t); - else if (noreturn_call_p (t)) - VEC_safe_push (tree, gc, modified_noreturn_calls, t); + else if (noreturn_call_p (t) && cfun->gimple_df) + VEC_safe_push (tree, gc, MODIFIED_NORETURN_CALLS (cfun), t); ann->modified = 1; } @@ -394,87 +486,10 @@ relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree s linknode->stmt = stmt; } -/* Finished the traverse of an immediate use list IMM by removing it from - the list. */ -static inline void -end_safe_imm_use_traverse (imm_use_iterator *imm) -{ - delink_imm_use (&(imm->iter_node)); -} - -/* Return true if IMM is at the end of the list. */ -static inline bool -end_safe_imm_use_p (imm_use_iterator *imm) -{ - return (imm->imm_use == imm->end_p); -} - -/* Initialize iterator IMM to process the list for VAR. */ -static inline use_operand_p -first_safe_imm_use (imm_use_iterator *imm, tree var) -{ - /* Set up and link the iterator node into the linked list for VAR. */ - imm->iter_node.use = NULL; - imm->iter_node.stmt = NULL_TREE; - imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); - /* Check if there are 0 elements. */ - if (imm->end_p->next == imm->end_p) - { - imm->imm_use = imm->end_p; - return NULL_USE_OPERAND_P; - } - - link_imm_use (&(imm->iter_node), var); - imm->imm_use = imm->iter_node.next; - return imm->imm_use; -} - -/* Bump IMM to the next use in the list. */ -static inline use_operand_p -next_safe_imm_use (imm_use_iterator *imm) -{ - ssa_use_operand_t *ptr; - use_operand_p old; - - old = imm->imm_use; - /* If the next node following the iter_node is still the one referred to by - imm_use, then the list hasn't changed, go to the next node. */ - if (imm->iter_node.next == imm->imm_use) - { - ptr = &(imm->iter_node); - /* Remove iternode from the list. */ - delink_imm_use (ptr); - imm->imm_use = imm->imm_use->next; - if (! end_safe_imm_use_p (imm)) - { - /* This isn't the end, link iternode before the next use. */ - ptr->prev = imm->imm_use->prev; - ptr->next = imm->imm_use; - imm->imm_use->prev->next = ptr; - imm->imm_use->prev = ptr; - } - else - return old; - } - else - { - /* If the 'next' value after the iterator isn't the same as it was, then - a node has been deleted, so we simply proceed to the node following - where the iterator is in the list. */ - imm->imm_use = imm->iter_node.next; - if (end_safe_imm_use_p (imm)) - { - end_safe_imm_use_traverse (imm); - return old; - } - } - - return imm->imm_use; -} /* Return true is IMM has reached the end of the immediate use list. */ static inline bool -end_readonly_imm_use_p (imm_use_iterator *imm) +end_readonly_imm_use_p (const imm_use_iterator *imm) { return (imm->imm_use == imm->end_p); } @@ -502,8 +517,8 @@ next_readonly_imm_use (imm_use_iterator *imm) use_operand_p old = imm->imm_use; #ifdef ENABLE_CHECKING - /* If this assertion fails, it indicates the 'next' pointer has changed - since we the last bump. This indicates that the list is being modified + /* If this assertion fails, it indicates the 'next' pointer has changed + since the last bump. This indicates that the list is being modified via stmt changes, or SET_USE, or somesuch thing, and you need to be using the SAFE version of the iterator. */ gcc_assert (imm->iter_node.next == old->next); @@ -512,38 +527,35 @@ next_readonly_imm_use (imm_use_iterator *imm) imm->imm_use = old->next; if (end_readonly_imm_use_p (imm)) - return old; + return NULL_USE_OPERAND_P; return imm->imm_use; } /* Return true if VAR has no uses. */ static inline bool -has_zero_uses (tree var) +has_zero_uses (const_tree var) { - ssa_use_operand_t *ptr; - ptr = &(SSA_NAME_IMM_USE_NODE (var)); + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); /* A single use means there is no items in the list. */ return (ptr == ptr->next); } /* Return true if VAR has a single use. */ static inline bool -has_single_use (tree var) +has_single_use (const_tree var) { - ssa_use_operand_t *ptr; - ptr = &(SSA_NAME_IMM_USE_NODE (var)); + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); /* A single use means there is one item in the list. */ return (ptr != ptr->next && ptr == ptr->next->next); } + /* If VAR has only a single immediate use, return true, and set USE_P and STMT to the use pointer and stmt of occurrence. */ static inline bool -single_imm_use (tree var, use_operand_p *use_p, tree *stmt) +single_imm_use (const_tree var, use_operand_p *use_p, tree *stmt) { - ssa_use_operand_t *ptr; - - ptr = &(SSA_NAME_IMM_USE_NODE (var)); + const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); if (ptr != ptr->next && ptr == ptr->next->next) { *use_p = ptr->next; @@ -557,20 +569,18 @@ single_imm_use (tree var, use_operand_p *use_p, tree *stmt) /* Return the number of immediate uses of VAR. */ static inline unsigned int -num_imm_uses (tree var) +num_imm_uses (const_tree var) { - ssa_use_operand_t *ptr, *start; - unsigned int num; + const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var)); + const ssa_use_operand_t *ptr; + unsigned int num = 0; - start = &(SSA_NAME_IMM_USE_NODE (var)); - num = 0; for (ptr = start->next; ptr != start; ptr = ptr->next) num++; return num; } - /* Return the tree pointer to by USE. */ static inline tree get_use_from_ptr (use_operand_p use) @@ -612,9 +622,21 @@ addresses_taken (tree stmt) /* Return the PHI nodes for basic block BB, or NULL if there are no PHI nodes. */ static inline tree -phi_nodes (basic_block bb) +phi_nodes (const_basic_block bb) { - return bb->phi_nodes; + gcc_assert (!(bb->flags & BB_RTL)); + if (!bb->il.tree) + return NULL; + return bb->il.tree->phi_nodes; +} + +/* Return pointer to the list of PHI nodes for basic block BB. */ + +static inline tree * +phi_nodes_ptr (basic_block bb) +{ + gcc_assert (!(bb->flags & BB_RTL)); + return &bb->il.tree->phi_nodes; } /* Set list of phi nodes of a basic block BB to L. */ @@ -624,7 +646,8 @@ set_phi_nodes (basic_block bb, tree l) { tree phi; - bb->phi_nodes = l; + gcc_assert (!(bb->flags & BB_RTL)); + bb->il.tree->phi_nodes = l; for (phi = l; phi; phi = PHI_CHAIN (phi)) set_bb_for_stmt (phi, bb); } @@ -670,32 +693,15 @@ set_is_used (tree var) } -/* ----------------------------------------------------------------------- */ +/* Return true if T (assumed to be a DECL) is a global variable. */ -/* Return true if T is an executable statement. */ static inline bool -is_exec_stmt (tree t) +is_global_var (const_tree t) { - return (t && !IS_EMPTY_STMT (t) && t != error_mark_node); -} - - -/* Return true if this stmt can be the target of a control transfer stmt such - as a goto. */ -static inline bool -is_label_stmt (tree t) -{ - if (t) - switch (TREE_CODE (t)) - { - case LABEL_DECL: - case LABEL_EXPR: - case CASE_LABEL_EXPR: - return true; - default: - return false; - } - return false; + if (MTAG_P (t)) + return MTAG_GLOBAL (t); + else + return (TREE_STATIC (t) || DECL_EXTERNAL (t)); } /* PHI nodes should contain only ssa_names and invariants. A test @@ -703,7 +709,7 @@ is_label_stmt (tree t) slip in in the meantime. */ static inline bool -phi_ssa_name_p (tree t) +phi_ssa_name_p (const_tree t) { if (TREE_CODE (t) == SSA_NAME) return true; @@ -715,20 +721,37 @@ phi_ssa_name_p (tree t) /* ----------------------------------------------------------------------- */ +/* Returns the list of statements in BB. */ + +static inline tree +bb_stmt_list (const_basic_block bb) +{ + gcc_assert (!(bb->flags & BB_RTL)); + return bb->il.tree->stmt_list; +} + +/* Sets the list of statements in BB to LIST. */ + +static inline void +set_bb_stmt_list (basic_block bb, tree list) +{ + gcc_assert (!(bb->flags & BB_RTL)); + bb->il.tree->stmt_list = list; +} + /* Return a block_stmt_iterator that points to beginning of basic block BB. */ static inline block_stmt_iterator bsi_start (basic_block bb) { block_stmt_iterator bsi; - if (bb->stmt_list) - bsi.tsi = tsi_start (bb->stmt_list); - else + if (bb->index < NUM_FIXED_BLOCKS) { - gcc_assert (bb->index < NUM_FIXED_BLOCKS); bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; } + else + bsi.tsi = tsi_start (bb_stmt_list (bb)); bsi.bb = bb; return bsi; } @@ -753,14 +776,14 @@ static inline block_stmt_iterator bsi_last (basic_block bb) { block_stmt_iterator bsi; - if (bb->stmt_list) - bsi.tsi = tsi_last (bb->stmt_list); - else + + if (bb->index < NUM_FIXED_BLOCKS) { - gcc_assert (bb->index < NUM_FIXED_BLOCKS); bsi.tsi.ptr = NULL; bsi.tsi.container = NULL; } + else + bsi.tsi = tsi_last (bb_stmt_list (bb)); bsi.bb = bb; return bsi; } @@ -817,11 +840,43 @@ loop_containing_stmt (tree stmt) return bb->loop_father; } + +/* Return the memory partition tag associated with symbol SYM. */ + +static inline tree +memory_partition (tree sym) +{ + tree tag; + + /* MPTs belong to their own partition. */ + if (TREE_CODE (sym) == MEMORY_PARTITION_TAG) + return sym; + + gcc_assert (!is_gimple_reg (sym)); + tag = get_var_ann (sym)->mpt; + +#if defined ENABLE_CHECKING + if (tag) + gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG); +#endif + + return tag; +} + +/* Return true if NAME is a memory factoring SSA name (i.e., an SSA + name for a memory partition. */ + +static inline bool +factoring_name_p (const_tree name) +{ + return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG; +} + /* Return true if VAR is a clobbered by function calls. */ static inline bool -is_call_clobbered (tree var) +is_call_clobbered (const_tree var) { - return bitmap_bit_p (call_clobbered_vars, DECL_UID (var)); + return var_ann (var)->call_clobbered; } /* Mark variable VAR as being clobbered by function calls. */ @@ -829,7 +884,8 @@ static inline void mark_call_clobbered (tree var, unsigned int escape_type) { var_ann (var)->escape_mask |= escape_type; - bitmap_set_bit (call_clobbered_vars, DECL_UID (var)); + var_ann (var)->call_clobbered = true; + bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var)); } /* Clear the call-clobbered attribute from variable VAR. */ @@ -838,34 +894,30 @@ clear_call_clobbered (tree var) { var_ann_t ann = var_ann (var); ann->escape_mask = 0; - if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG) + if (MTAG_P (var)) MTAG_GLOBAL (var) = 0; - bitmap_clear_bit (call_clobbered_vars, DECL_UID (var)); -} - -/* Mark variable VAR as being non-addressable. */ -static inline void -mark_non_addressable (tree var) -{ - bitmap_clear_bit (call_clobbered_vars, DECL_UID (var)); - TREE_ADDRESSABLE (var) = 0; + var_ann (var)->call_clobbered = false; + bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var)); } /* Return the common annotation for T. Return NULL if the annotation doesn't already exist. */ -static inline tree_ann_t -tree_ann (tree t) +static inline tree_ann_common_t +tree_common_ann (const_tree t) { - return t->common.ann; + /* Watch out static variables with unshared annotations. */ + if (DECL_P (t) && TREE_CODE (t) == VAR_DECL) + return &var_ann (t)->common; + return &t->base.ann->common; } /* Return a common annotation for T. Create the constant annotation if it doesn't exist. */ -static inline tree_ann_t -get_tree_ann (tree t) +static inline tree_ann_common_t +get_tree_common_ann (tree t) { - tree_ann_t ann = tree_ann (t); - return (ann) ? ann : create_tree_ann (t); + tree_ann_common_t ann = tree_common_ann (t); + return (ann) ? ann : create_tree_common_ann (t); } /* ----------------------------------------------------------------------- */ @@ -875,7 +927,7 @@ get_tree_ann (tree t) /* Return true if PTR is finished iterating. */ static inline bool -op_iter_done (ssa_op_iter *ptr) +op_iter_done (const ssa_op_iter *ptr) { return ptr->done; } @@ -896,20 +948,22 @@ op_iter_next_use (ssa_op_iter *ptr) } if (ptr->vuses) { - use_p = VUSE_OP_PTR (ptr->vuses); - ptr->vuses = ptr->vuses->next; + use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index); + if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses)) + { + ptr->vuse_index = 0; + ptr->vuses = ptr->vuses->next; + } return use_p; } if (ptr->mayuses) { - use_p = MAYDEF_OP_PTR (ptr->mayuses); - ptr->mayuses = ptr->mayuses->next; - return use_p; - } - if (ptr->mustkills) - { - use_p = MUSTDEF_KILL_PTR (ptr->mustkills); - ptr->mustkills = ptr->mustkills->next; + use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index); + if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses)) + { + ptr->mayuse_index = 0; + ptr->mayuses = ptr->mayuses->next; + } return use_p; } if (ptr->phi_i < ptr->num_phi) @@ -934,16 +988,10 @@ op_iter_next_def (ssa_op_iter *ptr) ptr->defs = ptr->defs->next; return def_p; } - if (ptr->mustdefs) + if (ptr->vdefs) { - def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs); - ptr->mustdefs = ptr->mustdefs->next; - return def_p; - } - if (ptr->maydefs) - { - def_p = MAYDEF_RESULT_PTR (ptr->maydefs); - ptr->maydefs = ptr->maydefs->next; + def_p = VDEF_RESULT_PTR (ptr->vdefs); + ptr->vdefs = ptr->vdefs->next; return def_p; } ptr->done = true; @@ -966,20 +1014,22 @@ op_iter_next_tree (ssa_op_iter *ptr) } if (ptr->vuses) { - val = VUSE_OP (ptr->vuses); - ptr->vuses = ptr->vuses->next; + val = VUSE_OP (ptr->vuses, ptr->vuse_index); + if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses)) + { + ptr->vuse_index = 0; + ptr->vuses = ptr->vuses->next; + } return val; } if (ptr->mayuses) { - val = MAYDEF_OP (ptr->mayuses); - ptr->mayuses = ptr->mayuses->next; - return val; - } - if (ptr->mustkills) - { - val = MUSTDEF_KILL (ptr->mustkills); - ptr->mustkills = ptr->mustkills->next; + val = VDEF_OP (ptr->mayuses, ptr->mayuse_index); + if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses)) + { + ptr->mayuse_index = 0; + ptr->mayuses = ptr->mayuses->next; + } return val; } if (ptr->defs) @@ -988,16 +1038,10 @@ op_iter_next_tree (ssa_op_iter *ptr) ptr->defs = ptr->defs->next; return val; } - if (ptr->mustdefs) + if (ptr->vdefs) { - val = MUSTDEF_RESULT (ptr->mustdefs); - ptr->mustdefs = ptr->mustdefs->next; - return val; - } - if (ptr->maydefs) - { - val = MAYDEF_RESULT (ptr->maydefs); - ptr->maydefs = ptr->maydefs->next; + val = VDEF_RESULT (ptr->vdefs); + ptr->vdefs = ptr->vdefs->next; return val; } @@ -1017,15 +1061,15 @@ clear_and_done_ssa_iter (ssa_op_iter *ptr) ptr->defs = NULL; ptr->uses = NULL; ptr->vuses = NULL; - ptr->maydefs = NULL; + ptr->vdefs = NULL; ptr->mayuses = NULL; - ptr->mustdefs = NULL; - ptr->mustkills = NULL; ptr->iter_type = ssa_op_iter_none; ptr->phi_i = 0; ptr->num_phi = 0; ptr->phi_stmt = NULL_TREE; ptr->done = true; + ptr->vuse_index = 0; + ptr->mayuse_index = 0; } /* Initialize the iterator PTR to the virtual defs in STMT. */ @@ -1039,15 +1083,15 @@ op_iter_init (ssa_op_iter *ptr, tree stmt, int flags) ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL; ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL; ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL; - ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL; - ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL; - ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL; - ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL; + ptr->vdefs = (flags & SSA_OP_VDEF) ? VDEF_OPS (stmt) : NULL; + ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? VDEF_OPS (stmt) : NULL; ptr->done = false; ptr->phi_i = 0; ptr->num_phi = 0; ptr->phi_stmt = NULL_TREE; + ptr->vuse_index = 0; + ptr->mayuse_index = 0; } /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return @@ -1066,7 +1110,7 @@ op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags) static inline def_operand_p op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags) { - gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0); + gcc_assert ((flags & SSA_OP_ALL_USES) == 0); op_iter_init (ptr, stmt, flags); ptr->iter_type = ssa_op_iter_def; return op_iter_next_def (ptr); @@ -1085,73 +1129,53 @@ op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags) /* Get the next iterator mustdef value for PTR, returning the mustdef values in KILL and DEF. */ static inline void -op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def, +op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def, ssa_op_iter *ptr) { #ifdef ENABLE_CHECKING - gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef); + gcc_assert (ptr->iter_type == ssa_op_iter_vdef); #endif if (ptr->mayuses) { - *def = MAYDEF_RESULT_PTR (ptr->mayuses); - *use = MAYDEF_OP_PTR (ptr->mayuses); + *def = VDEF_RESULT_PTR (ptr->mayuses); + *use = VDEF_VECT (ptr->mayuses); ptr->mayuses = ptr->mayuses->next; return; } - if (ptr->mustkills) - { - *def = MUSTDEF_RESULT_PTR (ptr->mustkills); - *use = MUSTDEF_KILL_PTR (ptr->mustkills); - ptr->mustkills = ptr->mustkills->next; - return; - } - *def = NULL_DEF_OPERAND_P; - *use = NULL_USE_OPERAND_P; + *use = NULL; ptr->done = true; return; } -/* Initialize iterator PTR to the operands in STMT. Return the first operands - in USE and DEF. */ static inline void -op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use, - def_operand_p *def) +op_iter_next_mustdef (use_operand_p *use, def_operand_p *def, + ssa_op_iter *ptr) { - gcc_assert (TREE_CODE (stmt) != PHI_NODE); - - op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); - ptr->iter_type = ssa_op_iter_maymustdef; - op_iter_next_maymustdef (use, def, ptr); + vuse_vec_p vp; + op_iter_next_vdef (&vp, def, ptr); + if (vp != NULL) + { + gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1); + *use = VUSE_ELEMENT_PTR (*vp, 0); + } + else + *use = NULL_USE_OPERAND_P; } - /* Initialize iterator PTR to the operands in STMT. Return the first operands - in KILL and DEF. */ + in USE and DEF. */ static inline void -op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill, +op_iter_init_vdef (ssa_op_iter *ptr, tree stmt, vuse_vec_p *use, def_operand_p *def) { gcc_assert (TREE_CODE (stmt) != PHI_NODE); - op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL); - ptr->iter_type = ssa_op_iter_maymustdef; - op_iter_next_maymustdef (kill, def, ptr); -} - -/* Initialize iterator PTR to the operands in STMT. Return the first operands - in KILL and DEF. */ -static inline void -op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt, - use_operand_p *kill, def_operand_p *def) -{ - gcc_assert (TREE_CODE (stmt) != PHI_NODE); - - op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE); - ptr->iter_type = ssa_op_iter_maymustdef; - op_iter_next_maymustdef (kill, def, ptr); + op_iter_init (ptr, stmt, SSA_OP_VMAYUSE); + ptr->iter_type = ssa_op_iter_vdef; + op_iter_next_vdef (use, def, ptr); } @@ -1210,8 +1234,8 @@ single_ssa_def_operand (tree stmt, int flags) } -/* If there is a single operand in STMT matching FLAGS, return it. Otherwise - return NULL. */ +/* Return true if there are zero operands in STMT matching the type + given in FLAGS. */ static inline bool zero_ssa_operands (tree stmt, int flags) { @@ -1244,8 +1268,7 @@ delink_stmt_imm_use (tree stmt) use_operand_p use_p; if (ssa_operands_active ()) - FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, - (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)) + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) delink_imm_use (use_p); } @@ -1310,7 +1333,7 @@ single_phi_def (tree stmt, int flags) } /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should - be either SSA_OP_USES or SAS_OP_VIRTUAL_USES. */ + be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ static inline use_operand_p op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags) { @@ -1367,18 +1390,172 @@ op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags) return PHI_RESULT_PTR (phi); } +/* Return true is IMM has reached the end of the immediate use stmt list. */ + +static inline bool +end_imm_use_stmt_p (const imm_use_iterator *imm) +{ + return (imm->imm_use == imm->end_p); +} + +/* Finished the traverse of an immediate use stmt list IMM by removing the + placeholder node from the list. */ + +static inline void +end_imm_use_stmt_traverse (imm_use_iterator *imm) +{ + delink_imm_use (&(imm->iter_node)); +} + +/* Immediate use traversal of uses within a stmt require that all the + uses on a stmt be sequentially listed. This routine is used to build up + this sequential list by adding USE_P to the end of the current list + currently delimited by HEAD and LAST_P. The new LAST_P value is + returned. */ + +static inline use_operand_p +move_use_after_head (use_operand_p use_p, use_operand_p head, + use_operand_p last_p) +{ + gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); + /* Skip head when we find it. */ + if (use_p != head) + { + /* If use_p is already linked in after last_p, continue. */ + if (last_p->next == use_p) + last_p = use_p; + else + { + /* Delink from current location, and link in at last_p. */ + delink_imm_use (use_p); + link_imm_use_to_list (use_p, last_p); + last_p = use_p; + } + } + return last_p; +} + + +/* This routine will relink all uses with the same stmt as HEAD into the list + immediately following HEAD for iterator IMM. */ + +static inline void +link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) +{ + use_operand_p use_p; + use_operand_p last_p = head; + tree head_stmt = USE_STMT (head); + tree use = USE_FROM_PTR (head); + ssa_op_iter op_iter; + int flag; + + /* Only look at virtual or real uses, depending on the type of HEAD. */ + flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); + + if (TREE_CODE (head_stmt) == PHI_NODE) + { + FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag) + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + else + { + FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) + if (USE_FROM_PTR (use_p) == use) + last_p = move_use_after_head (use_p, head, last_p); + } + /* Link iter node in after last_p. */ + if (imm->iter_node.prev != NULL) + delink_imm_use (&imm->iter_node); + link_imm_use_to_list (&(imm->iter_node), last_p); +} + +/* Initialize IMM to traverse over uses of VAR. Return the first statement. */ +static inline tree +first_imm_use_stmt (imm_use_iterator *imm, tree var) +{ + gcc_assert (TREE_CODE (var) == SSA_NAME); + + imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); + imm->imm_use = imm->end_p->next; + imm->next_imm_name = NULL_USE_OPERAND_P; + + /* iter_node is used as a marker within the immediate use list to indicate + where the end of the current stmt's uses are. Initialize it to NULL + stmt and use, which indicates a marker node. */ + imm->iter_node.prev = NULL_USE_OPERAND_P; + imm->iter_node.next = NULL_USE_OPERAND_P; + imm->iter_node.stmt = NULL_TREE; + imm->iter_node.use = NULL_USE_OPERAND_P; + + if (end_imm_use_stmt_p (imm)) + return NULL_TREE; + + link_use_stmts_after (imm->imm_use, imm); + + return USE_STMT (imm->imm_use); +} + +/* Bump IMM to the next stmt which has a use of var. */ + +static inline tree +next_imm_use_stmt (imm_use_iterator *imm) +{ + imm->imm_use = imm->iter_node.next; + if (end_imm_use_stmt_p (imm)) + { + if (imm->iter_node.prev != NULL) + delink_imm_use (&imm->iter_node); + return NULL_TREE; + } + + link_use_stmts_after (imm->imm_use, imm); + return USE_STMT (imm->imm_use); +} + +/* This routine will return the first use on the stmt IMM currently refers + to. */ + +static inline use_operand_p +first_imm_use_on_stmt (imm_use_iterator *imm) +{ + imm->next_imm_name = imm->imm_use->next; + return imm->imm_use; +} + +/* Return TRUE if the last use on the stmt IMM refers to has been visited. */ + +static inline bool +end_imm_use_on_stmt_p (const imm_use_iterator *imm) +{ + return (imm->imm_use == &(imm->iter_node)); +} +/* Bump to the next use on the stmt IMM refers to, return NULL if done. */ + +static inline use_operand_p +next_imm_use_on_stmt (imm_use_iterator *imm) +{ + imm->imm_use = imm->next_imm_name; + if (end_imm_use_on_stmt_p (imm)) + return NULL_USE_OPERAND_P; + else + { + imm->next_imm_name = imm->imm_use->next; + return imm->imm_use; + } +} /* Return true if VAR cannot be modified by the program. */ static inline bool -unmodifiable_var_p (tree var) +unmodifiable_var_p (const_tree var) { if (TREE_CODE (var) == SSA_NAME) var = SSA_NAME_VAR (var); if (MTAG_P (var)) - return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var)); + return false; return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); } @@ -1386,7 +1563,7 @@ unmodifiable_var_p (tree var) /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */ static inline bool -array_ref_contains_indirect_ref (tree ref) +array_ref_contains_indirect_ref (const_tree ref) { gcc_assert (TREE_CODE (ref) == ARRAY_REF); @@ -1401,7 +1578,7 @@ array_ref_contains_indirect_ref (tree ref) somewhere in it. */ static inline bool -ref_contains_array_ref (tree ref) +ref_contains_array_ref (const_tree ref) { gcc_assert (handled_component_p (ref)); @@ -1414,119 +1591,123 @@ ref_contains_array_ref (tree ref) return false; } -/* Given a variable VAR, lookup and return a pointer to the list of - subvariables for it. */ +/* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2] + overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the + range is open-ended. Otherwise return false. */ -static inline subvar_t * -lookup_subvars_for_var (tree var) -{ - var_ann_t ann = var_ann (var); - gcc_assert (ann); - return &ann->subvars; +static inline bool +ranges_overlap_p (unsigned HOST_WIDE_INT pos1, + unsigned HOST_WIDE_INT size1, + unsigned HOST_WIDE_INT pos2, + unsigned HOST_WIDE_INT size2) +{ + if (pos1 >= pos2 + && (size2 == (unsigned HOST_WIDE_INT)-1 + || pos1 < (pos2 + size2))) + return true; + if (pos2 >= pos1 + && (size1 == (unsigned HOST_WIDE_INT)-1 + || pos2 < (pos1 + size1))) + return true; + + return false; } -/* Given a variable VAR, return a linked list of subvariables for VAR, or - NULL, if there are no subvariables. */ +/* Return the memory tag associated with symbol SYM. */ -static inline subvar_t -get_subvars_for_var (tree var) +static inline tree +symbol_mem_tag (tree sym) { - subvar_t subvars; + tree tag = get_var_ann (sym)->symbol_mem_tag; - gcc_assert (SSA_VAR_P (var)); - - if (TREE_CODE (var) == SSA_NAME) - subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var))); - else - subvars = *(lookup_subvars_for_var (var)); - return subvars; +#if defined ENABLE_CHECKING + if (tag) + gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG); +#endif + + return tag; } -/* Return the subvariable of VAR at offset OFFSET. */ -static inline tree -get_subvar_at (tree var, unsigned HOST_WIDE_INT offset) +/* Set the memory tag associated with symbol SYM. */ + +static inline void +set_symbol_mem_tag (tree sym, tree tag) { - subvar_t sv; +#if defined ENABLE_CHECKING + if (tag) + gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG); +#endif - for (sv = get_subvars_for_var (var); sv; sv = sv->next) - if (sv->offset == offset) - return sv->var; + get_var_ann (sym)->symbol_mem_tag = tag; +} - return NULL_TREE; +/* Get the value handle of EXPR. This is the only correct way to get + the value handle for a "thing". If EXPR does not have a value + handle associated, it returns NULL_TREE. + NB: If EXPR is min_invariant, this function is *required* to return + EXPR. */ + +static inline tree +get_value_handle (tree expr) +{ + if (TREE_CODE (expr) == SSA_NAME) + return SSA_NAME_VALUE (expr); + else if (DECL_P (expr) || TREE_CODE (expr) == TREE_LIST + || TREE_CODE (expr) == CONSTRUCTOR) + { + tree_ann_common_t ann = tree_common_ann (expr); + return ((ann) ? ann->value_handle : NULL_TREE); + } + else if (is_gimple_min_invariant (expr)) + return expr; + else if (EXPR_P (expr)) + { + tree_ann_common_t ann = tree_common_ann (expr); + return ((ann) ? ann->value_handle : NULL_TREE); + } + else + gcc_unreachable (); } -/* Return true if V is a tree that we can have subvars for. - Normally, this is any aggregate type. Also complex - types which are not gimple registers can have subvars. */ +/* Accessor to tree-ssa-operands.c caches. */ +static inline struct ssa_operands * +gimple_ssa_operands (const struct function *fun) +{ + return &fun->gimple_df->ssa_operands; +} -static inline bool -var_can_have_subvars (tree v) +/* Map describing reference statistics for function FN. */ +static inline struct mem_ref_stats_d * +gimple_mem_ref_stats (const struct function *fn) { - /* Volatile variables should never have subvars. */ - if (TREE_THIS_VOLATILE (v)) - return false; + return &fn->gimple_df->mem_ref_stats; +} - /* Non decls or memory tags can never have subvars. */ - if (!DECL_P (v) || MTAG_P (v)) - return false; +/* Given an edge_var_map V, return the PHI arg definition. */ - /* Aggregates can have subvars. */ - if (AGGREGATE_TYPE_P (TREE_TYPE (v))) - return true; +static inline tree +redirect_edge_var_map_def (edge_var_map *v) +{ + return v->def; +} - /* Complex types variables which are not also a gimple register can - have subvars. */ - if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE - && !DECL_COMPLEX_GIMPLE_REG_P (v)) - return true; +/* Given an edge_var_map V, return the PHI result. */ - return false; +static inline tree +redirect_edge_var_map_result (edge_var_map *v) +{ + return v->result; } - -/* Return true if OFFSET and SIZE define a range that overlaps with some - portion of the range of SV, a subvar. If there was an exact overlap, - *EXACT will be set to true upon return. */ -static inline bool -overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, - subvar_t sv, bool *exact) -{ - /* There are three possible cases of overlap. - 1. We can have an exact overlap, like so: - |offset, offset + size | - |sv->offset, sv->offset + sv->size | - - 2. We can have offset starting after sv->offset, like so: - - |offset, offset + size | - |sv->offset, sv->offset + sv->size | - - 3. We can have offset starting before sv->offset, like so: - - |offset, offset + size | - |sv->offset, sv->offset + sv->size| - */ - - if (exact) - *exact = false; - if (offset == sv->offset && size == sv->size) - { - if (exact) - *exact = true; - return true; - } - else if (offset >= sv->offset && offset < (sv->offset + sv->size)) - { - return true; - } - else if (offset < sv->offset && (size > sv->offset - offset)) - { - return true; - } - return false; +/* Return an SSA_NAME node for variable VAR defined in statement STMT + in function cfun. */ +static inline tree +make_ssa_name (tree var, tree stmt) +{ + return make_ssa_name_fn (cfun, var, stmt); } #endif /* _TREE_FLOW_INLINE_H */