X-Git-Url: http://git.sourceforge.jp/view?a=blobdiff_plain;f=gcc%2Ftree-complex.c;h=10fa0aeb71d1ada799f5447e43b7939c8c92d53a;hb=35ba59f55d9a948599b1bce3a68d199ad580661d;hp=587c90a1c7aa23e51d9d7fc339b7ec2756f0dca8;hpb=0bed386979f6bdc139c519bab996bed698ade995;p=pf3gnuchains%2Fgcc-fork.git diff --git a/gcc/tree-complex.c b/gcc/tree-complex.c index 587c90a1c7a..10fa0aeb71d 100644 --- a/gcc/tree-complex.c +++ b/gcc/tree-complex.c @@ -1,11 +1,11 @@ -/* Lower complex operations to scalar operations. - Copyright (C) 2004 Free Software Foundation, Inc. +/* Lower complex number operations to scalar operations. + Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 2, or (at your option) any +Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT @@ -14,104 +14,615 @@ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ +along with GCC; see the file COPYING3. If not see +. */ #include "config.h" #include "system.h" #include "coretypes.h" -#include "tree.h" #include "tm.h" +#include "tree.h" +#include "rtl.h" +#include "real.h" +#include "flags.h" #include "tree-flow.h" #include "tree-gimple.h" #include "tree-iterator.h" #include "tree-pass.h" -#include "flags.h" +#include "tree-ssa-propagate.h" +#include "diagnostic.h" -/* Force EXP to be a gimple_val. */ +/* For each complex ssa name, a lattice value. We're interested in finding + out whether a complex number is degenerate in some way, having only real + or only complex parts. */ -static tree -gimplify_val (block_stmt_iterator *bsi, tree type, tree exp) +typedef enum { - tree t, new_stmt, orig_stmt; + UNINITIALIZED = 0, + ONLY_REAL = 1, + ONLY_IMAG = 2, + VARYING = 3 +} complex_lattice_t; + +#define PAIR(a, b) ((a) << 2 | (b)) - if (is_gimple_val (exp)) - return exp; +DEF_VEC_I(complex_lattice_t); +DEF_VEC_ALLOC_I(complex_lattice_t, heap); - t = make_rename_temp (type, NULL); - new_stmt = build (MODIFY_EXPR, type, t, exp); +static VEC(complex_lattice_t, heap) *complex_lattice_values; - orig_stmt = bsi_stmt (*bsi); - SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt)); - TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt); +/* For each complex variable, a pair of variables for the components exists in + the hashtable. */ +static htab_t complex_variable_components; - bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT); +/* For each complex SSA_NAME, a pair of ssa names for the components. */ +static VEC(tree, heap) *complex_ssa_name_components; - return t; +/* Lookup UID in the complex_variable_components hashtable and return the + associated tree. */ +static tree +cvc_lookup (unsigned int uid) +{ + struct int_tree_map *h, in; + in.uid = uid; + h = htab_find_with_hash (complex_variable_components, &in, uid); + return h ? h->to : NULL; +} + +/* Insert the pair UID, TO into the complex_variable_components hashtable. */ + +static void +cvc_insert (unsigned int uid, tree to) +{ + struct int_tree_map *h; + void **loc; + + h = XNEW (struct int_tree_map); + h->uid = uid; + h->to = to; + loc = htab_find_slot_with_hash (complex_variable_components, h, + uid, INSERT); + *(struct int_tree_map **) loc = h; } -/* Extract the real or imaginary part of a complex variable or constant. - Make sure that it's a proper gimple_val and gimplify it if not. - Emit any new code before BSI. */ +/* Return true if T is not a zero constant. In the case of real values, + we're only interested in +0.0. */ -static tree -extract_component (block_stmt_iterator *bsi, tree t, bool imagpart_p) +static int +some_nonzerop (tree t) { - tree ret, inner_type; + int zerop = false; + + if (TREE_CODE (t) == REAL_CST) + zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0); + else if (TREE_CODE (t) == FIXED_CST) + zerop = fixed_zerop (t); + else if (TREE_CODE (t) == INTEGER_CST) + zerop = integer_zerop (t); + + return !zerop; +} + +/* Compute a lattice value from T. It may be a gimple_val, or, as a + special exception, a COMPLEX_EXPR. */ + +static complex_lattice_t +find_lattice_value (tree t) +{ + tree real, imag; + int r, i; + complex_lattice_t ret; - inner_type = TREE_TYPE (TREE_TYPE (t)); switch (TREE_CODE (t)) { + case SSA_NAME: + return VEC_index (complex_lattice_t, complex_lattice_values, + SSA_NAME_VERSION (t)); + case COMPLEX_CST: - ret = (imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t)); + real = TREE_REALPART (t); + imag = TREE_IMAGPART (t); break; case COMPLEX_EXPR: - ret = TREE_OPERAND (t, imagpart_p); + real = TREE_OPERAND (t, 0); + imag = TREE_OPERAND (t, 1); break; - case VAR_DECL: - case PARM_DECL: - ret = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), - inner_type, t); + default: + gcc_unreachable (); + } + + r = some_nonzerop (real); + i = some_nonzerop (imag); + ret = r*ONLY_REAL + i*ONLY_IMAG; + + /* ??? On occasion we could do better than mapping 0+0i to real, but we + certainly don't want to leave it UNINITIALIZED, which eventually gets + mapped to VARYING. */ + if (ret == UNINITIALIZED) + ret = ONLY_REAL; + + return ret; +} + +/* Determine if LHS is something for which we're interested in seeing + simulation results. */ + +static bool +is_complex_reg (tree lhs) +{ + return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); +} + +/* Mark the incoming parameters to the function as VARYING. */ + +static void +init_parameter_lattice_values (void) +{ + tree parm, ssa_name; + + for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm)) + if (is_complex_reg (parm) + && var_ann (parm) != NULL + && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE) + VEC_replace (complex_lattice_t, complex_lattice_values, + SSA_NAME_VERSION (ssa_name), VARYING); +} + +/* Initialize DONT_SIMULATE_AGAIN for each stmt and phi. Return false if + we found no statements we want to simulate, and thus there's nothing for + the entire pass to do. */ + +static bool +init_dont_simulate_again (void) +{ + basic_block bb; + block_stmt_iterator bsi; + tree phi; + bool saw_a_complex_op = false; + + FOR_EACH_BB (bb) + { + for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi)) + DONT_SIMULATE_AGAIN (phi) = !is_complex_reg (PHI_RESULT (phi)); + + for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) + { + tree orig_stmt, stmt, rhs = NULL; + bool dsa; + + orig_stmt = stmt = bsi_stmt (bsi); + + /* Most control-altering statements must be initially + simulated, else we won't cover the entire cfg. */ + dsa = !stmt_ends_bb_p (stmt); + + switch (TREE_CODE (stmt)) + { + case RETURN_EXPR: + /* We don't care what the lattice value of is, + since it's never used as an input to another computation. */ + dsa = true; + stmt = TREE_OPERAND (stmt, 0); + if (!stmt || TREE_CODE (stmt) != GIMPLE_MODIFY_STMT) + break; + /* FALLTHRU */ + + case GIMPLE_MODIFY_STMT: + dsa = !is_complex_reg (GIMPLE_STMT_OPERAND (stmt, 0)); + rhs = GIMPLE_STMT_OPERAND (stmt, 1); + break; + + case COND_EXPR: + rhs = TREE_OPERAND (stmt, 0); + break; + + default: + break; + } + + if (rhs) + switch (TREE_CODE (rhs)) + { + case EQ_EXPR: + case NE_EXPR: + rhs = TREE_OPERAND (rhs, 0); + /* FALLTHRU */ + + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case RDIV_EXPR: + case NEGATE_EXPR: + case CONJ_EXPR: + if (TREE_CODE (TREE_TYPE (rhs)) == COMPLEX_TYPE) + saw_a_complex_op = true; + break; + + case REALPART_EXPR: + case IMAGPART_EXPR: + /* The total store transformation performed during + gimplification creates such uninitialized loads + and we need to lower the statement to be able + to fix things up. */ + if (TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME + && ssa_undefined_value_p (TREE_OPERAND (rhs, 0))) + saw_a_complex_op = true; + break; + + default: + break; + } + + DONT_SIMULATE_AGAIN (orig_stmt) = dsa; + } + } + + return saw_a_complex_op; +} + + +/* Evaluate statement STMT against the complex lattice defined above. */ + +static enum ssa_prop_result +complex_visit_stmt (tree stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, + tree *result_p) +{ + complex_lattice_t new_l, old_l, op1_l, op2_l; + unsigned int ver; + tree lhs, rhs; + + if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT) + return SSA_PROP_VARYING; + + lhs = GIMPLE_STMT_OPERAND (stmt, 0); + rhs = GIMPLE_STMT_OPERAND (stmt, 1); + + /* These conditions should be satisfied due to the initial filter + set up in init_dont_simulate_again. */ + gcc_assert (TREE_CODE (lhs) == SSA_NAME); + gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); + + *result_p = lhs; + ver = SSA_NAME_VERSION (lhs); + old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver); + + switch (TREE_CODE (rhs)) + { + case SSA_NAME: + case COMPLEX_EXPR: + case COMPLEX_CST: + new_l = find_lattice_value (rhs); + break; + + case PLUS_EXPR: + case MINUS_EXPR: + op1_l = find_lattice_value (TREE_OPERAND (rhs, 0)); + op2_l = find_lattice_value (TREE_OPERAND (rhs, 1)); + + /* We've set up the lattice values such that IOR neatly + models addition. */ + new_l = op1_l | op2_l; + break; + + case MULT_EXPR: + case RDIV_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + op1_l = find_lattice_value (TREE_OPERAND (rhs, 0)); + op2_l = find_lattice_value (TREE_OPERAND (rhs, 1)); + + /* Obviously, if either varies, so does the result. */ + if (op1_l == VARYING || op2_l == VARYING) + new_l = VARYING; + /* Don't prematurely promote variables if we've not yet seen + their inputs. */ + else if (op1_l == UNINITIALIZED) + new_l = op2_l; + else if (op2_l == UNINITIALIZED) + new_l = op1_l; + else + { + /* At this point both numbers have only one component. If the + numbers are of opposite kind, the result is imaginary, + otherwise the result is real. The add/subtract translates + the real/imag from/to 0/1; the ^ performs the comparison. */ + new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; + + /* Don't allow the lattice value to flip-flop indefinitely. */ + new_l |= old_l; + } + break; + + case NEGATE_EXPR: + case CONJ_EXPR: + new_l = find_lattice_value (TREE_OPERAND (rhs, 0)); break; default: - abort (); + new_l = VARYING; + break; } - return gimplify_val (bsi, inner_type, ret); + /* If nothing changed this round, let the propagator know. */ + if (new_l == old_l) + return SSA_PROP_NOT_INTERESTING; + + VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l); + return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; +} + +/* Evaluate a PHI node against the complex lattice defined above. */ + +static enum ssa_prop_result +complex_visit_phi (tree phi) +{ + complex_lattice_t new_l, old_l; + unsigned int ver; + tree lhs; + int i; + + lhs = PHI_RESULT (phi); + + /* This condition should be satisfied due to the initial filter + set up in init_dont_simulate_again. */ + gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); + + /* We've set up the lattice values such that IOR neatly models PHI meet. */ + new_l = UNINITIALIZED; + for (i = PHI_NUM_ARGS (phi) - 1; i >= 0; --i) + new_l |= find_lattice_value (PHI_ARG_DEF (phi, i)); + + ver = SSA_NAME_VERSION (lhs); + old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver); + + if (new_l == old_l) + return SSA_PROP_NOT_INTERESTING; + + VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l); + return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; } -/* Build a binary operation and gimplify it. Emit code before BSI. - Return the gimple_val holding the result. */ +/* Create one backing variable for a complex component of ORIG. */ static tree -do_binop (block_stmt_iterator *bsi, enum tree_code code, - tree type, tree a, tree b) +create_one_component_var (tree type, tree orig, const char *prefix, + const char *suffix, enum tree_code code) { - tree ret; + tree r = create_tmp_var (type, prefix); + add_referenced_var (r); - ret = fold (build (code, type, a, b)); - STRIP_NOPS (ret); + DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); + DECL_ARTIFICIAL (r) = 1; - return gimplify_val (bsi, type, ret); + if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) + { + const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); + tree inner_type; + + DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL))); + + inner_type = TREE_TYPE (TREE_TYPE (orig)); + SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); + DECL_DEBUG_EXPR_IS_FROM (r) = 1; + DECL_IGNORED_P (r) = 0; + TREE_NO_WARNING (r) = TREE_NO_WARNING (orig); + } + else + { + DECL_IGNORED_P (r) = 1; + TREE_NO_WARNING (r) = 1; + } + + return r; +} + +/* Retrieve a value for a complex component of VAR. */ + +static tree +get_component_var (tree var, bool imag_p) +{ + size_t decl_index = DECL_UID (var) * 2 + imag_p; + tree ret = cvc_lookup (decl_index); + + if (ret == NULL) + { + ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, + imag_p ? "CI" : "CR", + imag_p ? "$imag" : "$real", + imag_p ? IMAGPART_EXPR : REALPART_EXPR); + cvc_insert (decl_index, ret); + } + + return ret; } -/* Build a unary operation and gimplify it. Emit code before BSI. - Return the gimple_val holding the result. */ +/* Retrieve a value for a complex component of SSA_NAME. */ static tree -do_unop (block_stmt_iterator *bsi, enum tree_code code, tree type, tree a) +get_component_ssa_name (tree ssa_name, bool imag_p) { + complex_lattice_t lattice = find_lattice_value (ssa_name); + size_t ssa_name_index; tree ret; - ret = fold (build1 (code, type, a)); - STRIP_NOPS (ret); + if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) + { + tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); + if (SCALAR_FLOAT_TYPE_P (inner_type)) + return build_real (inner_type, dconst0); + else + return build_int_cst (inner_type, 0); + } + + ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; + ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index); + if (ret == NULL) + { + ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); + ret = make_ssa_name (ret, NULL); + + /* Copy some properties from the original. In particular, whether it + is used in an abnormal phi, and whether it's uninitialized. */ + SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) + = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); + if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL + && IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name))) + { + SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); + set_default_def (SSA_NAME_VAR (ret), ret); + } + + VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret); + } + + return ret; +} + +/* Set a value for a complex component of SSA_NAME, return a STMT_LIST of + stuff that needs doing. */ + +static tree +set_component_ssa_name (tree ssa_name, bool imag_p, tree value) +{ + complex_lattice_t lattice = find_lattice_value (ssa_name); + size_t ssa_name_index; + tree comp, list, last; + + /* We know the value must be zero, else there's a bug in our lattice + analysis. But the value may well be a variable known to contain + zero. We should be safe ignoring it. */ + if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) + return NULL; + + /* If we've already assigned an SSA_NAME to this component, then this + means that our walk of the basic blocks found a use before the set. + This is fine. Now we should create an initialization for the value + we created earlier. */ + ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; + comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index); + if (comp) + ; + + /* If we've nothing assigned, and the value we're given is already stable, + then install that as the value for this SSA_NAME. This preemptively + copy-propagates the value, which avoids unnecessary memory allocation. */ + else if (is_gimple_min_invariant (value)) + { + VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value); + return NULL; + } + else if (TREE_CODE (value) == SSA_NAME + && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) + { + /* Replace an anonymous base value with the variable from cvc_lookup. + This should result in better debug info. */ + if (DECL_IGNORED_P (SSA_NAME_VAR (value)) + && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) + { + comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); + replace_ssa_name_symbol (value, comp); + } + + VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value); + return NULL; + } + + /* Finally, we need to stabilize the result by installing the value into + a new ssa name. */ + else + comp = get_component_ssa_name (ssa_name, imag_p); + + /* Do all the work to assign VALUE to COMP. */ + value = force_gimple_operand (value, &list, false, NULL); + last = build_gimple_modify_stmt (comp, value); + append_to_statement_list (last, &list); + + gcc_assert (SSA_NAME_DEF_STMT (comp) == NULL); + SSA_NAME_DEF_STMT (comp) = last; + + return list; +} + +/* Extract the real or imaginary part of a complex variable or constant. + Make sure that it's a proper gimple_val and gimplify it if not. + Emit any new code before BSI. */ + +static tree +extract_component (block_stmt_iterator *bsi, tree t, bool imagpart_p, + bool gimple_p) +{ + switch (TREE_CODE (t)) + { + case COMPLEX_CST: + return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); + + case COMPLEX_EXPR: + return TREE_OPERAND (t, imagpart_p); + + case VAR_DECL: + case RESULT_DECL: + case PARM_DECL: + case INDIRECT_REF: + case COMPONENT_REF: + case ARRAY_REF: + { + tree inner_type = TREE_TYPE (TREE_TYPE (t)); + + t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), + inner_type, unshare_expr (t)); + + if (gimple_p) + t = gimplify_val (bsi, inner_type, t); + + return t; + } + + case SSA_NAME: + return get_component_ssa_name (t, imagpart_p); + + default: + gcc_unreachable (); + } +} + +/* Update the complex components of the ssa name on the lhs of STMT. */ + +static void +update_complex_components (block_stmt_iterator *bsi, tree stmt, tree r, tree i) +{ + tree lhs = GIMPLE_STMT_OPERAND (stmt, 0); + tree list; + + list = set_component_ssa_name (lhs, false, r); + if (list) + bsi_insert_after (bsi, list, BSI_CONTINUE_LINKING); + + list = set_component_ssa_name (lhs, true, i); + if (list) + bsi_insert_after (bsi, list, BSI_CONTINUE_LINKING); +} + +static void +update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) +{ + tree list; + + list = set_component_ssa_name (lhs, false, r); + if (list) + bsi_insert_on_edge (e, list); - return gimplify_val (bsi, type, ret); + list = set_component_ssa_name (lhs, true, i); + if (list) + bsi_insert_on_edge (e, list); } /* Update an assignment to a complex variable in place. */ @@ -119,15 +630,184 @@ do_unop (block_stmt_iterator *bsi, enum tree_code code, tree type, tree a) static void update_complex_assignment (block_stmt_iterator *bsi, tree r, tree i) { - tree stmt = bsi_stmt (*bsi); + tree stmt, mod; tree type; - modify_stmt (stmt); + mod = stmt = bsi_stmt (*bsi); if (TREE_CODE (stmt) == RETURN_EXPR) - stmt = TREE_OPERAND (stmt, 0); + mod = TREE_OPERAND (mod, 0); + else if (gimple_in_ssa_p (cfun)) + update_complex_components (bsi, stmt, r, i); - type = TREE_TYPE (TREE_OPERAND (stmt, 1)); - TREE_OPERAND (stmt, 1) = build (COMPLEX_EXPR, type, r, i); + type = TREE_TYPE (GIMPLE_STMT_OPERAND (mod, 1)); + GIMPLE_STMT_OPERAND (mod, 1) = build2 (COMPLEX_EXPR, type, r, i); + update_stmt (stmt); +} + +/* Generate code at the entry point of the function to initialize the + component variables for a complex parameter. */ + +static void +update_parameter_components (void) +{ + edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR); + tree parm; + + for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm)) + { + tree type = TREE_TYPE (parm); + tree ssa_name, r, i; + + if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) + continue; + + type = TREE_TYPE (type); + ssa_name = gimple_default_def (cfun, parm); + if (!ssa_name) + continue; + + r = build1 (REALPART_EXPR, type, ssa_name); + i = build1 (IMAGPART_EXPR, type, ssa_name); + update_complex_components_on_edge (entry_edge, ssa_name, r, i); + } +} + +/* Generate code to set the component variables of a complex variable + to match the PHI statements in block BB. */ + +static void +update_phi_components (basic_block bb) +{ + tree phi; + + for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi)) + if (is_complex_reg (PHI_RESULT (phi))) + { + tree lr, li, pr = NULL, pi = NULL; + unsigned int i, n; + + lr = get_component_ssa_name (PHI_RESULT (phi), false); + if (TREE_CODE (lr) == SSA_NAME) + { + pr = create_phi_node (lr, bb); + SSA_NAME_DEF_STMT (lr) = pr; + } + + li = get_component_ssa_name (PHI_RESULT (phi), true); + if (TREE_CODE (li) == SSA_NAME) + { + pi = create_phi_node (li, bb); + SSA_NAME_DEF_STMT (li) = pi; + } + + for (i = 0, n = PHI_NUM_ARGS (phi); i < n; ++i) + { + tree comp, arg = PHI_ARG_DEF (phi, i); + if (pr) + { + comp = extract_component (NULL, arg, false, false); + SET_PHI_ARG_DEF (pr, i, comp); + } + if (pi) + { + comp = extract_component (NULL, arg, true, false); + SET_PHI_ARG_DEF (pi, i, comp); + } + } + } +} + +/* Mark each virtual op in STMT for ssa update. */ + +static void +update_all_vops (tree stmt) +{ + ssa_op_iter iter; + tree sym; + + FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS) + { + if (TREE_CODE (sym) == SSA_NAME) + sym = SSA_NAME_VAR (sym); + mark_sym_for_renaming (sym); + } +} + +/* Expand a complex move to scalars. */ + +static void +expand_complex_move (block_stmt_iterator *bsi, tree stmt, tree type, + tree lhs, tree rhs) +{ + tree inner_type = TREE_TYPE (type); + tree r, i; + + if (TREE_CODE (lhs) == SSA_NAME) + { + if (is_ctrl_altering_stmt (bsi_stmt (*bsi))) + { + edge_iterator ei; + edge e; + + /* The value is not assigned on the exception edges, so we need not + concern ourselves there. We do need to update on the fallthru + edge. Find it. */ + FOR_EACH_EDGE (e, ei, bsi->bb->succs) + if (e->flags & EDGE_FALLTHRU) + goto found_fallthru; + gcc_unreachable (); + found_fallthru: + + r = build1 (REALPART_EXPR, inner_type, lhs); + i = build1 (IMAGPART_EXPR, inner_type, lhs); + update_complex_components_on_edge (e, lhs, r, i); + } + else if (TREE_CODE (rhs) == CALL_EXPR || TREE_SIDE_EFFECTS (rhs) + || TREE_CODE (rhs) == PAREN_EXPR) + { + r = build1 (REALPART_EXPR, inner_type, lhs); + i = build1 (IMAGPART_EXPR, inner_type, lhs); + update_complex_components (bsi, stmt, r, i); + } + else + { + update_all_vops (bsi_stmt (*bsi)); + r = extract_component (bsi, rhs, 0, true); + i = extract_component (bsi, rhs, 1, true); + update_complex_assignment (bsi, r, i); + } + } + else if (TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) + { + tree x; + + r = extract_component (bsi, rhs, 0, false); + i = extract_component (bsi, rhs, 1, false); + + x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); + x = build_gimple_modify_stmt (x, r); + bsi_insert_before (bsi, x, BSI_SAME_STMT); + + if (stmt == bsi_stmt (*bsi)) + { + x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); + GIMPLE_STMT_OPERAND (stmt, 0) = x; + GIMPLE_STMT_OPERAND (stmt, 1) = i; + } + else + { + x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); + x = build_gimple_modify_stmt (x, i); + bsi_insert_before (bsi, x, BSI_SAME_STMT); + + stmt = bsi_stmt (*bsi); + gcc_assert (TREE_CODE (stmt) == RETURN_EXPR); + GIMPLE_STMT_OPERAND (stmt, 0) = lhs; + } + + update_all_vops (stmt); + update_stmt (stmt); + } } /* Expand complex addition to scalars: @@ -138,39 +818,194 @@ update_complex_assignment (block_stmt_iterator *bsi, tree r, tree i) static void expand_complex_addition (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai, tree br, tree bi, - enum tree_code code) + enum tree_code code, + complex_lattice_t al, complex_lattice_t bl) { tree rr, ri; - rr = do_binop (bsi, code, inner_type, ar, br); - ri = do_binop (bsi, code, inner_type, ai, bi); + switch (PAIR (al, bl)) + { + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimplify_build2 (bsi, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_REAL, ONLY_IMAG): + rr = ar; + if (code == MINUS_EXPR) + ri = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ai, bi); + else + ri = bi; + break; + + case PAIR (ONLY_IMAG, ONLY_REAL): + if (code == MINUS_EXPR) + rr = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ar, br); + else + rr = br; + ri = ai; + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = ar; + ri = gimplify_build2 (bsi, code, inner_type, ai, bi); + break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimplify_build2 (bsi, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = ar; + ri = gimplify_build2 (bsi, code, inner_type, ai, bi); + break; + + case PAIR (ONLY_REAL, VARYING): + if (code == MINUS_EXPR) + goto general; + rr = gimplify_build2 (bsi, code, inner_type, ar, br); + ri = bi; + break; + + case PAIR (ONLY_IMAG, VARYING): + if (code == MINUS_EXPR) + goto general; + rr = br; + ri = gimplify_build2 (bsi, code, inner_type, ai, bi); + break; + + case PAIR (VARYING, VARYING): + general: + rr = gimplify_build2 (bsi, code, inner_type, ar, br); + ri = gimplify_build2 (bsi, code, inner_type, ai, bi); + break; + + default: + gcc_unreachable (); + } update_complex_assignment (bsi, rr, ri); } +/* Expand a complex multiplication or division to a libcall to the c99 + compliant routines. */ + +static void +expand_complex_libcall (block_stmt_iterator *bsi, tree ar, tree ai, + tree br, tree bi, enum tree_code code) +{ + enum machine_mode mode; + enum built_in_function bcode; + tree fn, stmt, type; + + stmt = bsi_stmt (*bsi); + type = TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 1)); + + mode = TYPE_MODE (type); + gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); + if (code == MULT_EXPR) + bcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT; + else if (code == RDIV_EXPR) + bcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT; + else + gcc_unreachable (); + fn = built_in_decls[bcode]; + + GIMPLE_STMT_OPERAND (stmt, 1) = build_call_expr (fn, 4, ar, ai, br, bi); + update_stmt (stmt); + + if (gimple_in_ssa_p (cfun)) + { + tree lhs = GIMPLE_STMT_OPERAND (stmt, 0); + type = TREE_TYPE (type); + update_complex_components (bsi, stmt, + build1 (REALPART_EXPR, type, lhs), + build1 (IMAGPART_EXPR, type, lhs)); + } +} + /* Expand complex multiplication to scalars: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) */ static void expand_complex_multiplication (block_stmt_iterator *bsi, tree inner_type, - tree ar, tree ai, tree br, tree bi) + tree ar, tree ai, tree br, tree bi, + complex_lattice_t al, complex_lattice_t bl) { - tree t1, t2, t3, t4, rr, ri; + tree rr, ri; - t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, br); - t2 = do_binop (bsi, MULT_EXPR, inner_type, ai, bi); - t3 = do_binop (bsi, MULT_EXPR, inner_type, ar, bi); + if (al < bl) + { + complex_lattice_t tl; + rr = ar, ar = br, br = rr; + ri = ai, ai = bi, bi = ri; + tl = al, al = bl, bl = tl; + } - /* Avoid expanding redundant multiplication for the common - case of squaring a complex number. */ - if (ar == br && ai == bi) - t4 = t3; - else - t4 = do_binop (bsi, MULT_EXPR, inner_type, ai, br); + switch (PAIR (al, bl)) + { + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_IMAG, ONLY_REAL): + rr = ar; + if (TREE_CODE (ai) == REAL_CST + && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1)) + ri = br; + else + ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br); + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi); + rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, rr); + ri = ar; + break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br); + ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br); + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi); + rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, rr); + ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi); + break; + + case PAIR (VARYING, VARYING): + if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) + { + expand_complex_libcall (bsi, ar, ai, br, bi, MULT_EXPR); + return; + } + else + { + tree t1, t2, t3, t4; + + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br); + t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi); + t3 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi); + + /* Avoid expanding redundant multiplication for the common + case of squaring a complex number. */ + if (ar == br && ai == bi) + t4 = t3; + else + t4 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br); + + rr = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, t2); + ri = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t3, t4); + } + break; - rr = do_binop (bsi, MINUS_EXPR, inner_type, t1, t2); - ri = do_binop (bsi, PLUS_EXPR, inner_type, t3, t4); + default: + gcc_unreachable (); + } update_complex_assignment (bsi, rr, ri); } @@ -187,19 +1022,19 @@ expand_complex_div_straight (block_stmt_iterator *bsi, tree inner_type, { tree rr, ri, div, t1, t2, t3; - t1 = do_binop (bsi, MULT_EXPR, inner_type, br, br); - t2 = do_binop (bsi, MULT_EXPR, inner_type, bi, bi); - div = do_binop (bsi, PLUS_EXPR, inner_type, t1, t2); + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, br, br); + t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, bi, bi); + div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, t2); - t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, br); - t2 = do_binop (bsi, MULT_EXPR, inner_type, ai, bi); - t3 = do_binop (bsi, PLUS_EXPR, inner_type, t1, t2); - rr = do_binop (bsi, code, inner_type, t3, div); + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br); + t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi); + t3 = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, t2); + rr = gimplify_build2 (bsi, code, inner_type, t3, div); - t1 = do_binop (bsi, MULT_EXPR, inner_type, ai, br); - t2 = do_binop (bsi, MULT_EXPR, inner_type, ar, bi); - t3 = do_binop (bsi, MINUS_EXPR, inner_type, t1, t2); - ri = do_binop (bsi, code, inner_type, t3, div); + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br); + t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi); + t3 = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, t2); + ri = gimplify_build2 (bsi, code, inner_type, t3, div); update_complex_assignment (bsi, rr, ri); } @@ -212,38 +1047,24 @@ expand_complex_div_wide (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai, tree br, tree bi, enum tree_code code) { - tree rr, ri, ratio, div, t1, t2, min, max, cond; + tree rr, ri, ratio, div, t1, t2, tr, ti, cond; + basic_block bb_cond, bb_true, bb_false, bb_join; /* Examine |br| < |bi|, and branch. */ - t1 = do_unop (bsi, ABS_EXPR, inner_type, br); - t2 = do_unop (bsi, ABS_EXPR, inner_type, bi); - cond = fold (build (LT_EXPR, boolean_type_node, t1, t2)); + t1 = gimplify_build1 (bsi, ABS_EXPR, inner_type, br); + t2 = gimplify_build1 (bsi, ABS_EXPR, inner_type, bi); + cond = fold_build2 (LT_EXPR, boolean_type_node, t1, t2); STRIP_NOPS (cond); - if (TREE_CONSTANT (cond)) - { - if (integer_zerop (cond)) - min = bi, max = br; - else - min = br, max = bi; - } - else + bb_cond = bb_true = bb_false = bb_join = NULL; + rr = ri = tr = ti = NULL; + if (!TREE_CONSTANT (cond)) { - basic_block bb_cond, bb_true, bb_false, bb_join; - tree l1, l2, l3; edge e; - l1 = create_artificial_label (); - t1 = build (GOTO_EXPR, void_type_node, l1); - l2 = create_artificial_label (); - t2 = build (GOTO_EXPR, void_type_node, l2); - cond = build (COND_EXPR, void_type_node, cond, t1, t2); + cond = build3 (COND_EXPR, void_type_node, cond, NULL_TREE, NULL_TREE); bsi_insert_before (bsi, cond, BSI_SAME_STMT); - min = make_rename_temp (inner_type, NULL); - max = make_rename_temp (inner_type, NULL); - l3 = create_artificial_label (); - /* Split the original block, and create the TRUE and FALSE blocks. */ e = split_block (bsi->bb, cond); bb_cond = e->src; @@ -255,57 +1076,103 @@ expand_complex_div_wide (block_stmt_iterator *bsi, tree inner_type, e->flags = EDGE_TRUE_VALUE; redirect_edge_succ (e, bb_true); make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); - make_edge (bb_true, bb_join, 0); - make_edge (bb_false, bb_join, 0); + make_edge (bb_true, bb_join, EDGE_FALLTHRU); + make_edge (bb_false, bb_join, EDGE_FALLTHRU); /* Update dominance info. Note that bb_join's data was updated by split_block. */ - if (dom_computed[CDI_DOMINATORS] >= DOM_CONS_OK) + if (dom_info_available_p (CDI_DOMINATORS)) { set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); } - /* Compute min and max for TRUE block. */ - *bsi = bsi_start (bb_true); - t1 = build (LABEL_EXPR, void_type_node, l1); - bsi_insert_after (bsi, t1, BSI_NEW_STMT); - t1 = build (MODIFY_EXPR, inner_type, min, br); - bsi_insert_after (bsi, t1, BSI_NEW_STMT); - t1 = build (MODIFY_EXPR, inner_type, max, bi); - bsi_insert_after (bsi, t1, BSI_NEW_STMT); - - /* Compute min and max for FALSE block. */ - *bsi = bsi_start (bb_false); - t1 = build (LABEL_EXPR, void_type_node, l2); - bsi_insert_after (bsi, t1, BSI_NEW_STMT); - t1 = build (MODIFY_EXPR, inner_type, min, bi); - bsi_insert_after (bsi, t1, BSI_NEW_STMT); - t1 = build (MODIFY_EXPR, inner_type, max, br); - bsi_insert_after (bsi, t1, BSI_NEW_STMT); - - /* Insert the join label into the tail of the original block. */ - *bsi = bsi_start (bb_join); - t1 = build (LABEL_EXPR, void_type_node, l3); - bsi_insert_before (bsi, t1, BSI_SAME_STMT); + rr = make_rename_temp (inner_type, NULL); + ri = make_rename_temp (inner_type, NULL); } - - /* Now we have MIN(|br|, |bi|) and MAX(|br|, |bi|). We now use the - ratio min/max to scale both the dividend and divisor. */ - ratio = do_binop (bsi, code, inner_type, min, max); - /* Calculate the divisor: min*ratio + max. */ - t1 = do_binop (bsi, MULT_EXPR, inner_type, min, ratio); - div = do_binop (bsi, PLUS_EXPR, inner_type, t1, max); + /* In the TRUE branch, we compute + ratio = br/bi; + div = (br * ratio) + bi; + tr = (ar * ratio) + ai; + ti = (ai * ratio) - ar; + tr = tr / div; + ti = ti / div; */ + if (bb_true || integer_nonzerop (cond)) + { + if (bb_true) + { + *bsi = bsi_last (bb_true); + bsi_insert_after (bsi, build_empty_stmt (), BSI_NEW_STMT); + } + + ratio = gimplify_build2 (bsi, code, inner_type, br, bi); + + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, br, ratio); + div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, bi); + + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, ratio); + tr = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, ai); + + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, ratio); + ti = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, ar); + + tr = gimplify_build2 (bsi, code, inner_type, tr, div); + ti = gimplify_build2 (bsi, code, inner_type, ti, div); + + if (bb_true) + { + t1 = build_gimple_modify_stmt (rr, tr); + bsi_insert_before (bsi, t1, BSI_SAME_STMT); + t1 = build_gimple_modify_stmt (ri, ti); + bsi_insert_before (bsi, t1, BSI_SAME_STMT); + bsi_remove (bsi, true); + } + } + + /* In the FALSE branch, we compute + ratio = d/c; + divisor = (d * ratio) + c; + tr = (b * ratio) + a; + ti = b - (a * ratio); + tr = tr / div; + ti = ti / div; */ + if (bb_false || integer_zerop (cond)) + { + if (bb_false) + { + *bsi = bsi_last (bb_false); + bsi_insert_after (bsi, build_empty_stmt (), BSI_NEW_STMT); + } + + ratio = gimplify_build2 (bsi, code, inner_type, bi, br); + + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, bi, ratio); + div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, br); + + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, ratio); + tr = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, ar); - /* Result is now ((ar + ai*ratio)/div) + i((ai - ar*ratio)/div). */ - t1 = do_binop (bsi, MULT_EXPR, inner_type, ai, ratio); - t2 = do_binop (bsi, PLUS_EXPR, inner_type, ar, t1); - rr = do_binop (bsi, code, inner_type, t2, div); + t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, ratio); + ti = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ai, t1); + + tr = gimplify_build2 (bsi, code, inner_type, tr, div); + ti = gimplify_build2 (bsi, code, inner_type, ti, div); + + if (bb_false) + { + t1 = build_gimple_modify_stmt (rr, tr); + bsi_insert_before (bsi, t1, BSI_SAME_STMT); + t1 = build_gimple_modify_stmt (ri, ti); + bsi_insert_before (bsi, t1, BSI_SAME_STMT); + bsi_remove (bsi, true); + } + } - t1 = do_binop (bsi, MULT_EXPR, inner_type, ar, ratio); - t2 = do_binop (bsi, MINUS_EXPR, inner_type, ai, t1); - ri = do_binop (bsi, code, inner_type, t2, div); + if (bb_join) + *bsi = bsi_start (bb_join); + else + rr = tr, ri = ti; update_complex_assignment (bsi, rr, ri); } @@ -315,22 +1182,77 @@ expand_complex_div_wide (block_stmt_iterator *bsi, tree inner_type, static void expand_complex_division (block_stmt_iterator *bsi, tree inner_type, tree ar, tree ai, tree br, tree bi, - enum tree_code code) + enum tree_code code, + complex_lattice_t al, complex_lattice_t bl) { - switch (flag_complex_divide_method) + tree rr, ri; + + switch (PAIR (al, bl)) { - case 0: - /* straightforward implementation of complex divide acceptable. */ - expand_complex_div_straight (bsi, inner_type, ar, ai, br, bi, code); + case PAIR (ONLY_REAL, ONLY_REAL): + rr = gimplify_build2 (bsi, code, inner_type, ar, br); + ri = ai; + break; + + case PAIR (ONLY_REAL, ONLY_IMAG): + rr = ai; + ri = gimplify_build2 (bsi, code, inner_type, ar, bi); + ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ri); break; - case 1: - /* wide ranges of inputs must work for complex divide. */ - expand_complex_div_wide (bsi, inner_type, ar, ai, br, bi, code); + + case PAIR (ONLY_IMAG, ONLY_REAL): + rr = ar; + ri = gimplify_build2 (bsi, code, inner_type, ai, br); + break; + + case PAIR (ONLY_IMAG, ONLY_IMAG): + rr = gimplify_build2 (bsi, code, inner_type, ai, bi); + ri = ar; break; + + case PAIR (VARYING, ONLY_REAL): + rr = gimplify_build2 (bsi, code, inner_type, ar, br); + ri = gimplify_build2 (bsi, code, inner_type, ai, br); + break; + + case PAIR (VARYING, ONLY_IMAG): + rr = gimplify_build2 (bsi, code, inner_type, ai, bi); + ri = gimplify_build2 (bsi, code, inner_type, ar, bi); + ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ri); + + case PAIR (ONLY_REAL, VARYING): + case PAIR (ONLY_IMAG, VARYING): + case PAIR (VARYING, VARYING): + switch (flag_complex_method) + { + case 0: + /* straightforward implementation of complex divide acceptable. */ + expand_complex_div_straight (bsi, inner_type, ar, ai, br, bi, code); + break; + + case 2: + if (SCALAR_FLOAT_TYPE_P (inner_type)) + { + expand_complex_libcall (bsi, ar, ai, br, bi, code); + break; + } + /* FALLTHRU */ + + case 1: + /* wide ranges of inputs must work for complex divide. */ + expand_complex_div_wide (bsi, inner_type, ar, ai, br, bi, code); + break; + + default: + gcc_unreachable (); + } + return; + default: - /* C99-like requirements for complex divide (not yet implemented). */ - abort (); + gcc_unreachable (); } + + update_complex_assignment (bsi, rr, ri); } /* Expand complex negation to scalars: @@ -343,8 +1265,8 @@ expand_complex_negation (block_stmt_iterator *bsi, tree inner_type, { tree rr, ri; - rr = do_unop (bsi, NEGATE_EXPR, inner_type, ar); - ri = do_unop (bsi, NEGATE_EXPR, inner_type, ai); + rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ar); + ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ai); update_complex_assignment (bsi, rr, ri); } @@ -359,7 +1281,7 @@ expand_complex_conjugate (block_stmt_iterator *bsi, tree inner_type, { tree ri; - ri = do_unop (bsi, NEGATE_EXPR, inner_type, ai); + ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ai); update_complex_assignment (bsi, ar, ri); } @@ -370,31 +1292,33 @@ static void expand_complex_comparison (block_stmt_iterator *bsi, tree ar, tree ai, tree br, tree bi, enum tree_code code) { - tree cr, ci, cc, stmt, type; + tree cr, ci, cc, stmt, expr, type; - cr = do_binop (bsi, code, boolean_type_node, ar, br); - ci = do_binop (bsi, code, boolean_type_node, ai, bi); - cc = do_binop (bsi, (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), - boolean_type_node, cr, ci); + cr = gimplify_build2 (bsi, code, boolean_type_node, ar, br); + ci = gimplify_build2 (bsi, code, boolean_type_node, ai, bi); + cc = gimplify_build2 (bsi, + (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), + boolean_type_node, cr, ci); - stmt = bsi_stmt (*bsi); - modify_stmt (stmt); + stmt = expr = bsi_stmt (*bsi); switch (TREE_CODE (stmt)) { case RETURN_EXPR: - stmt = TREE_OPERAND (stmt, 0); + expr = TREE_OPERAND (stmt, 0); /* FALLTHRU */ - case MODIFY_EXPR: - type = TREE_TYPE (TREE_OPERAND (stmt, 1)); - TREE_OPERAND (stmt, 1) = convert (type, cc); + case GIMPLE_MODIFY_STMT: + type = TREE_TYPE (GIMPLE_STMT_OPERAND (expr, 1)); + GIMPLE_STMT_OPERAND (expr, 1) = fold_convert (type, cc); break; case COND_EXPR: TREE_OPERAND (stmt, 0) = cc; break; default: - abort (); + gcc_unreachable (); } + + update_stmt (stmt); } /* Process one statement. If we identify a complex operation, expand it. */ @@ -405,6 +1329,7 @@ expand_complex_operations_1 (block_stmt_iterator *bsi) tree stmt = bsi_stmt (*bsi); tree rhs, type, inner_type; tree ac, ar, ai, bc, br, bi; + complex_lattice_t al, bl; enum tree_code code; switch (TREE_CODE (stmt)) @@ -413,12 +1338,12 @@ expand_complex_operations_1 (block_stmt_iterator *bsi) stmt = TREE_OPERAND (stmt, 0); if (!stmt) return; - if (TREE_CODE (stmt) != MODIFY_EXPR) + if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT) return; /* FALLTHRU */ - case MODIFY_EXPR: - rhs = TREE_OPERAND (stmt, 1); + case GIMPLE_MODIFY_STMT: + rhs = GIMPLE_STMT_OPERAND (stmt, 1); break; case COND_EXPR: @@ -458,16 +1383,39 @@ expand_complex_operations_1 (block_stmt_iterator *bsi) break; default: + { + tree lhs, rhs; + + /* COND_EXPR may also fallthru here, but we do not need to do anything + with it. */ + if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT) + return; + + lhs = GIMPLE_STMT_OPERAND (stmt, 0); + rhs = GIMPLE_STMT_OPERAND (stmt, 1); + + if (TREE_CODE (type) == COMPLEX_TYPE) + expand_complex_move (bsi, stmt, type, lhs, rhs); + else if ((TREE_CODE (rhs) == REALPART_EXPR + || TREE_CODE (rhs) == IMAGPART_EXPR) + && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) + { + GENERIC_TREE_OPERAND (stmt, 1) + = extract_component (bsi, TREE_OPERAND (rhs, 0), + TREE_CODE (rhs) == IMAGPART_EXPR, false); + update_stmt (stmt); + } + } return; } /* Extract the components of the two complex values. Make sure and handle the common case of the same value used twice specially. */ ac = TREE_OPERAND (rhs, 0); - ar = extract_component (bsi, ac, 0); - ai = extract_component (bsi, ac, 1); + ar = extract_component (bsi, ac, 0, true); + ai = extract_component (bsi, ac, 1, true); - if (TREE_CODE_CLASS (code) == '1') + if (TREE_CODE_CLASS (code) == tcc_unary) bc = br = bi = NULL; else { @@ -476,20 +1424,40 @@ expand_complex_operations_1 (block_stmt_iterator *bsi) br = ar, bi = ai; else { - br = extract_component (bsi, bc, 0); - bi = extract_component (bsi, bc, 1); + br = extract_component (bsi, bc, 0, true); + bi = extract_component (bsi, bc, 1, true); + } + } + + if (gimple_in_ssa_p (cfun)) + { + al = find_lattice_value (ac); + if (al == UNINITIALIZED) + al = VARYING; + + if (TREE_CODE_CLASS (code) == tcc_unary) + bl = UNINITIALIZED; + else if (ac == bc) + bl = al; + else + { + bl = find_lattice_value (bc); + if (bl == UNINITIALIZED) + bl = VARYING; } } + else + al = bl = VARYING; switch (code) { case PLUS_EXPR: case MINUS_EXPR: - expand_complex_addition (bsi, inner_type, ar, ai, br, bi, code); + expand_complex_addition (bsi, inner_type, ar, ai, br, bi, code, al, bl); break; case MULT_EXPR: - expand_complex_multiplication (bsi, inner_type, ar, ai, br, bi); + expand_complex_multiplication (bsi, inner_type, ar, ai, br, bi, al, bl); break; case TRUNC_DIV_EXPR: @@ -497,7 +1465,7 @@ expand_complex_operations_1 (block_stmt_iterator *bsi) case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case RDIV_EXPR: - expand_complex_division (bsi, inner_type, ar, ai, br, bi, code); + expand_complex_division (bsi, inner_type, ar, ai, br, bi, code, al, bl); break; case NEGATE_EXPR: @@ -514,39 +1482,111 @@ expand_complex_operations_1 (block_stmt_iterator *bsi) break; default: - abort (); + gcc_unreachable (); } } -/* Main loop to process each statement. */ -/* ??? Could use dominator bits to propagate from complex_expr at the - same time. This might reveal more constants, particularly in cases - such as (complex = complex op scalar). This may not be relevant - after SRA and subsequent cleanups. Proof of this would be if we - verify that the code generated by expand_complex_div_wide is - simplified properly to straight-line code. */ + +/* Entry point for complex operation lowering during optimization. */ -static void -expand_complex_operations (void) +static unsigned int +tree_lower_complex (void) { - int old_last_basic_block = last_basic_block; + int old_last_basic_block; block_stmt_iterator bsi; basic_block bb; + if (!init_dont_simulate_again ()) + return 0; + + complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names); + VEC_safe_grow_cleared (complex_lattice_t, heap, + complex_lattice_values, num_ssa_names); + + init_parameter_lattice_values (); + ssa_propagate (complex_visit_stmt, complex_visit_phi); + + complex_variable_components = htab_create (10, int_tree_map_hash, + int_tree_map_eq, free); + + complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names); + VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components, + 2 * num_ssa_names); + + update_parameter_components (); + + /* ??? Ideally we'd traverse the blocks in breadth-first order. */ + old_last_basic_block = last_basic_block; FOR_EACH_BB (bb) { if (bb->index >= old_last_basic_block) continue; + update_phi_components (bb); for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) expand_complex_operations_1 (&bsi); } + + bsi_commit_edge_inserts (); + + htab_delete (complex_variable_components); + VEC_free (tree, heap, complex_ssa_name_components); + VEC_free (complex_lattice_t, heap, complex_lattice_values); + return 0; } struct tree_opt_pass pass_lower_complex = { - "complex", /* name */ - NULL, /* gate */ - expand_complex_operations, /* execute */ + "cplxlower", /* name */ + 0, /* gate */ + tree_lower_complex, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + PROP_ssa, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func + | TODO_ggc_collect + | TODO_update_ssa + | TODO_verify_stmts, /* todo_flags_finish */ + 0 /* letter */ +}; + + +/* Entry point for complex operation lowering without optimization. */ + +static unsigned int +tree_lower_complex_O0 (void) +{ + int old_last_basic_block = last_basic_block; + block_stmt_iterator bsi; + basic_block bb; + + FOR_EACH_BB (bb) + { + if (bb->index >= old_last_basic_block) + continue; + for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) + expand_complex_operations_1 (&bsi); + } + return 0; +} + +static bool +gate_no_optimization (void) +{ + /* With errors, normal optimization passes are not run. If we don't + lower complex operations at all, rtl expansion will abort. */ + return optimize == 0 || sorrycount || errorcount; +} + +struct tree_opt_pass pass_lower_complex_O0 = +{ + "cplxlower0", /* name */ + gate_no_optimization, /* gate */ + tree_lower_complex_O0, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ @@ -555,7 +1595,7 @@ struct tree_opt_pass pass_lower_complex = 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ - TODO_dump_func | TODO_rename_vars - | TODO_ggc_collect | TODO_verify_ssa - | TODO_verify_stmts | TODO_verify_flow /* todo_flags_finish */ + TODO_dump_func | TODO_ggc_collect + | TODO_verify_stmts, /* todo_flags_finish */ + 0 /* letter */ };