X-Git-Url: http://git.sourceforge.jp/view?a=blobdiff_plain;f=gcc%2Freal.h;h=5a686536608c24d283cdd55d5f497c5268410524;hb=43fb76c1c6278d313ae7a273e94951dcc29f1963;hp=4b59378808ff40c98dd96300efce6ec3c6c20661;hpb=307e368b5c81ae0a71278e30bc63eb00e276b383;p=pf3gnuchains%2Fgcc-fork.git diff --git a/gcc/real.h b/gcc/real.h index 4b59378808f..5a686536608 100644 --- a/gcc/real.h +++ b/gcc/real.h @@ -1,102 +1,89 @@ /* Definitions of floating-point access for GNU compiler. - Copyright (C) 1989, 1991, 1994, 1996, 1997, 1998, - 1999, 2000, 2002 Free Software Foundation, Inc. + Copyright (C) 1989, 1991, 1994, 1996, 1997, 1998, 1999, + 2000, 2002, 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc. -This file is part of GCC. + This file is part of GCC. -GCC is free software; you can redistribute it and/or modify it under -the terms of the GNU General Public License as published by the Free -Software Foundation; either version 2, or (at your option) any later -version. + GCC is free software; you can redistribute it and/or modify it under + the terms of the GNU General Public License as published by the Free + Software Foundation; either version 3, or (at your option) any later + version. -GCC is distributed in the hope that it will be useful, but WITHOUT ANY -WARRANTY; without even the implied warranty of MERCHANTABILITY or -FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -for more details. + GCC is distributed in the hope that it will be useful, but WITHOUT ANY + WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + for more details. -You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ + You should have received a copy of the GNU General Public License + along with GCC; see the file COPYING3. If not see + . */ #ifndef GCC_REAL_H #define GCC_REAL_H -/* Define codes for all the float formats that we know of. */ -#define UNKNOWN_FLOAT_FORMAT 0 -#define IEEE_FLOAT_FORMAT 1 -#define VAX_FLOAT_FORMAT 2 -#define IBM_FLOAT_FORMAT 3 -#define C4X_FLOAT_FORMAT 4 - -/* Default to IEEE float if not specified. Nearly all machines use it. */ - -#ifndef TARGET_FLOAT_FORMAT -#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT -#endif - -#ifndef HOST_FLOAT_FORMAT -#define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT -#endif - -#ifndef INTEL_EXTENDED_IEEE_FORMAT -#define INTEL_EXTENDED_IEEE_FORMAT 0 -#endif - -/* If FLOAT_WORDS_BIG_ENDIAN and HOST_FLOAT_WORDS_BIG_ENDIAN are not defined - in the header files, then this implies the word-endianness is the same as - for integers. */ - -/* This is defined 0 or 1, like WORDS_BIG_ENDIAN. */ -#ifndef FLOAT_WORDS_BIG_ENDIAN -#define FLOAT_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN -#endif - -/* This is defined 0 or 1, unlike HOST_WORDS_BIG_ENDIAN. */ -#ifndef HOST_FLOAT_WORDS_BIG_ENDIAN -#ifdef HOST_WORDS_BIG_ENDIAN -#define HOST_FLOAT_WORDS_BIG_ENDIAN 1 -#else -#define HOST_FLOAT_WORDS_BIG_ENDIAN 0 -#endif -#endif - -#ifndef LONG_DOUBLE_TYPE_SIZE -#define LONG_DOUBLE_TYPE_SIZE 64 -#endif -/* MAX_LONG_DOUBLE_TYPE_SIZE is a constant tested by #if. - LONG_DOUBLE_TYPE_SIZE can vary at compiler run time. - So long as macros like REAL_VALUE_TO_TARGET_LONG_DOUBLE cannot - vary too, however, then XFmode and TFmode long double - cannot both be supported at the same time. */ -#ifndef MAX_LONG_DOUBLE_TYPE_SIZE -#define MAX_LONG_DOUBLE_TYPE_SIZE LONG_DOUBLE_TYPE_SIZE -#endif - -/* **** Start of software floating point emulator interface macros **** */ - -/* REAL_VALUE_TYPE is an array of the minimum number of HOST_WIDE_INTs - required to hold either a 96- or 160-bit extended precision floating - point type. This is true even if the maximum precision floating - point type on the target is smaller. */ -#if MAX_LONG_DOUBLE_TYPE_SIZE == 128 && !INTEL_EXTENDED_IEEE_FORMAT -#define REAL_VALUE_TYPE_SIZE 160 -#else -#define REAL_VALUE_TYPE_SIZE 96 +#ifndef GENERATOR_FILE +#include +#include #endif +#include "machmode.h" + +/* An expanded form of the represented number. */ + +/* Enumerate the special cases of numbers that we encounter. */ +enum real_value_class { + rvc_zero, + rvc_normal, + rvc_inf, + rvc_nan +}; + +#define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG) +#define EXP_BITS (32 - 6) +#define MAX_EXP ((1 << (EXP_BITS - 1)) - 1) +#define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG) +#define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1)) + +struct real_value GTY(()) +{ + /* Use the same underlying type for all bit-fields, so as to make + sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will + be miscomputed. */ + unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2; + unsigned int decimal : 1; + unsigned int sign : 1; + unsigned int signalling : 1; + unsigned int canonical : 1; + unsigned int uexp : EXP_BITS; + unsigned long sig[SIGSZ]; +}; + +#define REAL_EXP(REAL) \ + ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \ + - (1 << (EXP_BITS - 1))) +#define SET_REAL_EXP(REAL, EXP) \ + ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1))) + +/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it + needs to be a macro. We do need to continue to have a structure tag + so that other headers can forward declare it. */ +#define REAL_VALUE_TYPE struct real_value + +/* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in + consecutive "w" slots. Moreover, we've got to compute the number of "w" + slots at preprocessor time, which means we can't use sizeof. Guess. */ + +#define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32) #define REAL_WIDTH \ (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \ + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */ -typedef struct { - HOST_WIDE_INT r[REAL_WIDTH]; -} realvaluetype; -/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it needs - to be a macro. */ -#define REAL_VALUE_TYPE realvaluetype + +/* Verify the guess. */ +extern char test_real_width + [sizeof(REAL_VALUE_TYPE) <= REAL_WIDTH*sizeof(HOST_WIDE_INT) ? 1 : -1]; /* Calculate the format for CONST_DOUBLE. We need as many slots as are necessary to overlay a REAL_VALUE_TYPE on them. This could be - as many as five (32-bit HOST_WIDE_INT, 160-bit REAL_VALUE_TYPE). + as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE). A number of places assume that there are always at least two 'w' slots in a CONST_DOUBLE, so we provide them even if one would suffice. */ @@ -116,178 +103,383 @@ typedef struct { # if REAL_WIDTH == 5 # define CONST_DOUBLE_FORMAT "wwwww" # else - #error "REAL_WIDTH > 5 not supported" +# if REAL_WIDTH == 6 +# define CONST_DOUBLE_FORMAT "wwwwww" +# else + #error "REAL_WIDTH > 6 not supported" +# endif # endif # endif # endif # endif #endif -extern unsigned int significand_size PARAMS ((enum machine_mode)); -#define REAL_ARITHMETIC(value, code, d1, d2) \ - earith (&(value), (code), &(d1), &(d2)) +/* Describes the properties of the specific target format in use. */ +struct real_format +{ + /* Move to and from the target bytes. */ + void (*encode) (const struct real_format *, long *, + const REAL_VALUE_TYPE *); + void (*decode) (const struct real_format *, REAL_VALUE_TYPE *, + const long *); + + /* The radix of the exponent and digits of the significand. */ + int b; + + /* Size of the significand in digits of radix B. */ + int p; + + /* Size of the significant of a NaN, in digits of radix B. */ + int pnan; + + /* The minimum negative integer, x, such that b**(x-1) is normalized. */ + int emin; + + /* The maximum integer, x, such that b**(x-1) is representable. */ + int emax; + + /* The bit position of the sign bit, for determining whether a value + is positive/negative, or -1 for a complex encoding. */ + int signbit_ro; + + /* The bit position of the sign bit, for changing the sign of a number, + or -1 for a complex encoding. */ + int signbit_rw; + + /* Default rounding mode for operations on this format. */ + bool round_towards_zero; + bool has_sign_dependent_rounding; + + /* Properties of the format. */ + bool has_nans; + bool has_inf; + bool has_denorm; + bool has_signed_zero; + bool qnan_msb_set; + bool canonical_nan_lsbs_set; +}; + + +/* The target format used for each floating point mode. + Float modes are followed by decimal float modes, with entries for + float modes indexed by (MODE - first float mode), and entries for + decimal float modes indexed by (MODE - first decimal float mode) + + the number of float modes. */ +extern const struct real_format * + real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1 + + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1]; + +#define REAL_MODE_FORMAT(MODE) \ + (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \ + ? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \ + + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \ + : ((MODE) - MIN_MODE_FLOAT)]) + +#define FLOAT_MODE_FORMAT(MODE) \ + (REAL_MODE_FORMAT (SCALAR_FLOAT_MODE_P (MODE)? (MODE) \ + : GET_MODE_INNER (MODE))) + +/* The following macro determines whether the floating point format is + composite, i.e. may contain non-consecutive mantissa bits, in which + case compile-time FP overflow may not model run-time overflow. */ +#define MODE_COMPOSITE_P(MODE) \ + (FLOAT_MODE_P (MODE) \ + && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p) + +/* Accessor macros for format properties. */ +#define MODE_HAS_NANS(MODE) \ + (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans) +#define MODE_HAS_INFINITIES(MODE) \ + (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf) +#define MODE_HAS_SIGNED_ZEROS(MODE) \ + (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero) +#define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \ + (FLOAT_MODE_P (MODE) \ + && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding) + /* Declare functions in real.c. */ -extern void earith PARAMS ((REAL_VALUE_TYPE *, int, - REAL_VALUE_TYPE *, REAL_VALUE_TYPE *)); -extern REAL_VALUE_TYPE etrunci PARAMS ((REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE etruncui PARAMS ((REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE ereal_negate PARAMS ((REAL_VALUE_TYPE)); -extern HOST_WIDE_INT efixi PARAMS ((REAL_VALUE_TYPE)); -extern unsigned HOST_WIDE_INT efixui PARAMS ((REAL_VALUE_TYPE)); -extern void ereal_from_int PARAMS ((REAL_VALUE_TYPE *, - HOST_WIDE_INT, HOST_WIDE_INT, - enum machine_mode)); -extern void ereal_from_uint PARAMS ((REAL_VALUE_TYPE *, - unsigned HOST_WIDE_INT, - unsigned HOST_WIDE_INT, - enum machine_mode)); -extern void ereal_to_int PARAMS ((HOST_WIDE_INT *, HOST_WIDE_INT *, - REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE ereal_ldexp PARAMS ((REAL_VALUE_TYPE, int)); - -extern void etartdouble PARAMS ((REAL_VALUE_TYPE, long *)); -extern void etarldouble PARAMS ((REAL_VALUE_TYPE, long *)); -extern void etardouble PARAMS ((REAL_VALUE_TYPE, long *)); -extern long etarsingle PARAMS ((REAL_VALUE_TYPE)); -extern void ereal_to_decimal PARAMS ((REAL_VALUE_TYPE, char *)); -extern int ereal_cmp PARAMS ((REAL_VALUE_TYPE, REAL_VALUE_TYPE)); -extern int ereal_isneg PARAMS ((REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE ereal_unto_float PARAMS ((long)); -extern REAL_VALUE_TYPE ereal_unto_double PARAMS ((long *)); -extern REAL_VALUE_TYPE ereal_from_float PARAMS ((HOST_WIDE_INT)); -extern REAL_VALUE_TYPE ereal_from_double PARAMS ((HOST_WIDE_INT *)); - -#define REAL_VALUES_EQUAL(x, y) (ereal_cmp ((x), (y)) == 0) -/* true if x < y : */ -#define REAL_VALUES_LESS(x, y) (ereal_cmp ((x), (y)) == -1) -#define REAL_VALUE_LDEXP(x, n) ereal_ldexp (x, n) - -/* Compare two floating-point objects for bitwise identity. - This is not the same as comparing for equality on IEEE hosts: - -0.0 equals 0.0 but they are not identical, and conversely - two NaNs might be identical but they cannot be equal. */ -#define REAL_VALUES_IDENTICAL(x, y) \ - (!memcmp ((char *) &(x), (char *) &(y), sizeof (REAL_VALUE_TYPE))) - -/* These return REAL_VALUE_TYPE: */ -#define REAL_VALUE_RNDZINT(x) (etrunci (x)) -#define REAL_VALUE_UNSIGNED_RNDZINT(x) (etruncui (x)) - -/* Truncate the floating-point value X to mode MODE. */ -#define REAL_VALUE_TRUNCATE(mode, x) real_value_truncate (mode, x) -extern REAL_VALUE_TYPE real_value_truncate PARAMS ((enum machine_mode, - REAL_VALUE_TYPE)); - -/* Expansion of REAL_VALUE_TRUNCATE. - The result is in floating point, rounded to nearest or even. */ -extern bool exact_real_truncate PARAMS ((enum machine_mode, - REAL_VALUE_TYPE *)); - -/* These return HOST_WIDE_INT: */ -/* Convert a floating-point value to integer, rounding toward zero. */ -#define REAL_VALUE_FIX(x) (efixi (x)) -/* Convert a floating-point value to unsigned integer, rounding - toward zero. */ -#define REAL_VALUE_UNSIGNED_FIX(x) (efixui (x)) - -/* Convert ASCII string S to floating point in mode M. - Decimal input uses ATOF. Hexadecimal uses HTOF. */ -#define REAL_VALUE_ATOF(s,m) ereal_atof(s,m) -#define REAL_VALUE_HTOF(s,m) ereal_atof(s,m) - -#define REAL_VALUE_NEGATE ereal_negate - -/* Compute the absolute value of a floating-point value X. */ -#define REAL_VALUE_ABS(x) \ - (REAL_VALUE_NEGATIVE (x) ? REAL_VALUE_NEGATE (x) : (x)) + +/* Binary or unary arithmetic on tree_code. */ +extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *, + const REAL_VALUE_TYPE *); + +/* Compare reals by tree_code. */ +extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is infinite. */ +extern bool real_isinf (const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is a NaN. */ +extern bool real_isnan (const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is finite. */ +extern bool real_isfinite (const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is negative. */ +extern bool real_isneg (const REAL_VALUE_TYPE *); + +/* Determine whether a floating-point value X is minus zero. */ +extern bool real_isnegzero (const REAL_VALUE_TYPE *); + +/* Compare two floating-point objects for bitwise identity. */ +extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); + +/* Extend or truncate to a new mode. */ +extern void real_convert (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); + +/* Return true if truncating to NEW is exact. */ +extern bool exact_real_truncate (enum machine_mode, const REAL_VALUE_TYPE *); + +/* Render R as a decimal floating point constant. */ +extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t, + size_t, int); + +/* Render R as a decimal floating point constant, rounded so as to be + parsed back to the same value when interpreted in mode MODE. */ +extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t, + size_t, int, enum machine_mode); + +/* Render R as a hexadecimal floating point constant. */ +extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *, + size_t, size_t, int); + +/* Render R as an integer. */ +extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *); +extern void real_to_integer2 (HOST_WIDE_INT *, HOST_WIDE_INT *, + const REAL_VALUE_TYPE *); + +/* Initialize R from a decimal or hexadecimal string. Return -1 if + the value underflows, +1 if overflows, and 0 otherwise. */ +extern int real_from_string (REAL_VALUE_TYPE *, const char *); +/* Wrapper to allow different internal representation for decimal floats. */ +extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, enum machine_mode); + +/* Initialize R from an integer pair HIGH/LOW. */ +extern void real_from_integer (REAL_VALUE_TYPE *, enum machine_mode, + unsigned HOST_WIDE_INT, HOST_WIDE_INT, int); + +extern long real_to_target_fmt (long *, const REAL_VALUE_TYPE *, + const struct real_format *); +extern long real_to_target (long *, const REAL_VALUE_TYPE *, enum machine_mode); + +extern void real_from_target_fmt (REAL_VALUE_TYPE *, const long *, + const struct real_format *); +extern void real_from_target (REAL_VALUE_TYPE *, const long *, + enum machine_mode); + +extern void real_inf (REAL_VALUE_TYPE *); + +extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, enum machine_mode); + +extern void real_maxval (REAL_VALUE_TYPE *, int, enum machine_mode); + +extern void real_2expN (REAL_VALUE_TYPE *, int, enum machine_mode); + +extern unsigned int real_hash (const REAL_VALUE_TYPE *); + + +/* Target formats defined in real.c. */ +extern const struct real_format ieee_single_format; +extern const struct real_format mips_single_format; +extern const struct real_format motorola_single_format; +extern const struct real_format spu_single_format; +extern const struct real_format ieee_double_format; +extern const struct real_format mips_double_format; +extern const struct real_format motorola_double_format; +extern const struct real_format ieee_extended_motorola_format; +extern const struct real_format ieee_extended_intel_96_format; +extern const struct real_format ieee_extended_intel_96_round_53_format; +extern const struct real_format ieee_extended_intel_128_format; +extern const struct real_format ibm_extended_format; +extern const struct real_format mips_extended_format; +extern const struct real_format ieee_quad_format; +extern const struct real_format mips_quad_format; +extern const struct real_format vax_f_format; +extern const struct real_format vax_d_format; +extern const struct real_format vax_g_format; +extern const struct real_format real_internal_format; +extern const struct real_format decimal_single_format; +extern const struct real_format decimal_double_format; +extern const struct real_format decimal_quad_format; + + +/* ====================================================================== */ +/* Crap. */ + +#define REAL_ARITHMETIC(value, code, d1, d2) \ + real_arithmetic (&(value), code, &(d1), &(d2)) + +#define REAL_VALUES_IDENTICAL(x, y) real_identical (&(x), &(y)) +#define REAL_VALUES_EQUAL(x, y) real_compare (EQ_EXPR, &(x), &(y)) +#define REAL_VALUES_LESS(x, y) real_compare (LT_EXPR, &(x), &(y)) /* Determine whether a floating-point value X is infinite. */ -#define REAL_VALUE_ISINF(x) (target_isinf (x)) +#define REAL_VALUE_ISINF(x) real_isinf (&(x)) /* Determine whether a floating-point value X is a NaN. */ -#define REAL_VALUE_ISNAN(x) (target_isnan (x)) +#define REAL_VALUE_ISNAN(x) real_isnan (&(x)) /* Determine whether a floating-point value X is negative. */ -#define REAL_VALUE_NEGATIVE(x) (target_negative (x)) +#define REAL_VALUE_NEGATIVE(x) real_isneg (&(x)) /* Determine whether a floating-point value X is minus zero. */ -#define REAL_VALUE_MINUS_ZERO(x) \ - ((ereal_cmp (x, dconst0) == 0) && (ereal_isneg (x) != 0 )) +#define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x)) + +/* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ +#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \ + real_to_target (OUT, &(IN), \ + mode_for_size (LONG_DOUBLE_TYPE_SIZE, MODE_FLOAT, 0)) + +#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (64, MODE_FLOAT, 0)) -#define REAL_VALUE_TO_INT ereal_to_int +/* IN is a REAL_VALUE_TYPE. OUT is a long. */ +#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \ + ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_FLOAT, 0))) + +#define REAL_VALUE_FROM_INT(r, lo, hi, mode) \ + real_from_integer (&(r), mode, lo, hi, 0) -/* Here the cast to HOST_WIDE_INT sign-extends arguments such as ~0. */ -#define REAL_VALUE_FROM_INT(d, lo, hi, mode) \ - ereal_from_int (&d, (HOST_WIDE_INT) (lo), (HOST_WIDE_INT) (hi), mode) +#define REAL_VALUE_FROM_UNSIGNED_INT(r, lo, hi, mode) \ + real_from_integer (&(r), mode, lo, hi, 1) -#define REAL_VALUE_FROM_UNSIGNED_INT(d, lo, hi, mode) \ - ereal_from_uint (&d, lo, hi, mode) +/* Real values to IEEE 754 decimal floats. */ /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ -#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \ - (LONG_DOUBLE_TYPE_SIZE == 64 ? etardouble ((IN), (OUT)) \ - : LONG_DOUBLE_TYPE_SIZE == 96 ? etarldouble ((IN), (OUT)) \ - : LONG_DOUBLE_TYPE_SIZE == 128 ? etartdouble ((IN), (OUT)) \ - : abort ()) -#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) (etardouble ((IN), (OUT))) +#define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (128, MODE_DECIMAL_FLOAT, 0)) + +#define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \ + real_to_target (OUT, &(IN), mode_for_size (64, MODE_DECIMAL_FLOAT, 0)) /* IN is a REAL_VALUE_TYPE. OUT is a long. */ -#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) ((OUT) = etarsingle ((IN))) +#define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \ + ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_DECIMAL_FLOAT, 0))) + +extern REAL_VALUE_TYPE real_value_truncate (enum machine_mode, + REAL_VALUE_TYPE); + +#define REAL_VALUE_TO_INT(plow, phigh, r) \ + real_to_integer2 (plow, phigh, &(r)) + +extern REAL_VALUE_TYPE real_arithmetic2 (int, const REAL_VALUE_TYPE *, + const REAL_VALUE_TYPE *); + +#define REAL_VALUE_NEGATE(X) \ + real_arithmetic2 (NEGATE_EXPR, &(X), NULL) + +#define REAL_VALUE_ABS(X) \ + real_arithmetic2 (ABS_EXPR, &(X), NULL) -/* Inverse of REAL_VALUE_TO_TARGET_DOUBLE. */ -#define REAL_VALUE_UNTO_TARGET_DOUBLE(d) (ereal_unto_double (d)) +extern int significand_size (enum machine_mode); -/* Inverse of REAL_VALUE_TO_TARGET_SINGLE. */ -#define REAL_VALUE_UNTO_TARGET_SINGLE(f) (ereal_unto_float (f)) +extern REAL_VALUE_TYPE real_from_string2 (const char *, enum machine_mode); -/* d is an array of HOST_WIDE_INT that holds a double precision - value in the target computer's floating point format. */ -#define REAL_VALUE_FROM_TARGET_DOUBLE(d) (ereal_from_double (d)) +#define REAL_VALUE_ATOF(s, m) \ + real_from_string2 (s, m) -/* f is a HOST_WIDE_INT containing a single precision target float value. */ -#define REAL_VALUE_FROM_TARGET_SINGLE(f) (ereal_from_float (f)) +#define CONST_DOUBLE_ATOF(s, m) \ + CONST_DOUBLE_FROM_REAL_VALUE (real_from_string2 (s, m), m) + +#define REAL_VALUE_FIX(r) \ + real_to_integer (&(r)) + +/* ??? Not quite right. */ +#define REAL_VALUE_UNSIGNED_FIX(r) \ + real_to_integer (&(r)) + +/* ??? These were added for Paranoia support. */ -/* Conversions to decimal ASCII string. */ -#define REAL_VALUE_TO_DECIMAL(r, fmt, s) (ereal_to_decimal (r, s)) +/* Return floor log2(R). */ +extern int real_exponent (const REAL_VALUE_TYPE *); + +/* R = A * 2**EXP. */ +extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int); /* **** End of software floating point emulator interface macros **** */ -/* Constant real values 0, 1, 2, and -1. */ +/* Constant real values 0, 1, 2, -1 and 0.5. */ extern REAL_VALUE_TYPE dconst0; extern REAL_VALUE_TYPE dconst1; extern REAL_VALUE_TYPE dconst2; extern REAL_VALUE_TYPE dconstm1; +extern REAL_VALUE_TYPE dconsthalf; + +#define dconst_e() (*dconst_e_ptr ()) +#define dconst_third() (*dconst_third_ptr ()) +#define dconst_sqrt2() (*dconst_sqrt2_ptr ()) + +/* Function to return the real value special constant 'e'. */ +extern const REAL_VALUE_TYPE * dconst_e_ptr (void); + +/* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */ +extern const REAL_VALUE_TYPE * dconst_third_ptr (void); + +/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */ +extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void); -/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */ /* Function to return a real value (not a tree node) from a given integer constant. */ -union tree_node; -REAL_VALUE_TYPE real_value_from_int_cst PARAMS ((union tree_node *, - union tree_node *)); +REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree); -#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \ - memcpy (&(to), &CONST_DOUBLE_LOW ((from)), sizeof (REAL_VALUE_TYPE)) +/* Given a CONST_DOUBLE in FROM, store into TO the value it represents. */ +#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \ + ((to) = *CONST_DOUBLE_REAL_VALUE (from)) /* Return a CONST_DOUBLE with value R and mode M. */ - #define CONST_DOUBLE_FROM_REAL_VALUE(r, m) \ const_double_from_real_value (r, m) -extern rtx const_double_from_real_value PARAMS ((REAL_VALUE_TYPE, - enum machine_mode)); - -/* Shorthand; can be handy in machine descriptions. */ -#define CONST_DOUBLE_ATOF(s, m) \ - CONST_DOUBLE_FROM_REAL_VALUE (REAL_VALUE_ATOF (s, m), m) +extern rtx const_double_from_real_value (REAL_VALUE_TYPE, enum machine_mode); /* Replace R by 1/R in the given machine mode, if the result is exact. */ -extern int exact_real_inverse PARAMS ((enum machine_mode, REAL_VALUE_TYPE *)); -extern int target_isnan PARAMS ((REAL_VALUE_TYPE)); -extern int target_isinf PARAMS ((REAL_VALUE_TYPE)); -extern int target_negative PARAMS ((REAL_VALUE_TYPE)); -extern void debug_real PARAMS ((REAL_VALUE_TYPE)); -extern REAL_VALUE_TYPE ereal_atof PARAMS ((const char *, enum machine_mode)); +extern bool exact_real_inverse (enum machine_mode, REAL_VALUE_TYPE *); + +/* Return true if arithmetic on values in IMODE that were promoted + from values in TMODE is equivalent to direct arithmetic on values + in TMODE. */ +bool real_can_shorten_arithmetic (enum machine_mode, enum machine_mode); + +/* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */ +extern tree build_real (tree, REAL_VALUE_TYPE); + +/* Calculate R as the square root of X in the given machine mode. */ +extern bool real_sqrt (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); + +/* Calculate R as X raised to the integer exponent N in mode MODE. */ +extern bool real_powi (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *, HOST_WIDE_INT); + +/* Standard round to integer value functions. */ +extern void real_trunc (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_floor (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_ceil (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); +extern void real_round (REAL_VALUE_TYPE *, enum machine_mode, + const REAL_VALUE_TYPE *); + +/* Set the sign of R to the sign of X. */ +extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); + +#ifndef GENERATOR_FILE +/* Convert between MPFR and REAL_VALUE_TYPE. The caller is + responsible for initializing and clearing the MPFR parameter. */ + +extern void real_from_mpfr (REAL_VALUE_TYPE *, mpfr_srcptr, tree, mp_rnd_t); +extern void mpfr_from_real (mpfr_ptr, const REAL_VALUE_TYPE *, mp_rnd_t); +#endif + +/* Check whether the real constant value given is an integer. */ +extern bool real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode); +/* Write into BUF the maximum representable finite floating-point + number, (1 - b**-p) * b**emax for a given FP format FMT as a hex + float string. BUF must be large enough to contain the result. */ +extern void get_max_float (const struct real_format *, char *, size_t); #endif /* ! GCC_REAL_H */