X-Git-Url: http://git.sourceforge.jp/view?a=blobdiff_plain;f=gcc%2Flambda.h;h=94ca90644e43a4a53460e1a7ad5e816abfe53a81;hb=84033db453e0bd7f77075072d7270cd34ef65af0;hp=ec48ea44a7ddb5be35614196b931da18a9a49b70;hpb=2045cdd44d272c6b5330210e6a60aa16f769b850;p=pf3gnuchains%2Fgcc-fork.git diff --git a/gcc/lambda.h b/gcc/lambda.h index ec48ea44a7d..94ca90644e4 100644 --- a/gcc/lambda.h +++ b/gcc/lambda.h @@ -1,12 +1,13 @@ /* Lambda matrix and vector interface. - Copyright (C) 2003, 2004 Free Software Foundation, Inc. + Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 + Free Software Foundation, Inc. Contributed by Daniel Berlin This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free -Software Foundation; either version 2, or (at your option) any later +Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY @@ -15,9 +16,8 @@ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING. If not, write to the Free -Software Foundation, 59 Temple Place - Suite 330, Boston, MA -02111-1307, USA. */ +along with GCC; see the file COPYING3. If not see +. */ #ifndef LAMBDA_H #define LAMBDA_H @@ -29,12 +29,25 @@ Software Foundation, 59 Temple Place - Suite 330, Boston, MA and scalar multiplication. In this vector space, an element is a list of integers. */ typedef int *lambda_vector; +DEF_VEC_P(lambda_vector); +DEF_VEC_ALLOC_P(lambda_vector,heap); +DEF_VEC_ALLOC_P(lambda_vector,gc); + +typedef VEC(lambda_vector, heap) *lambda_vector_vec_p; +DEF_VEC_P (lambda_vector_vec_p); +DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap); + /* An integer matrix. A matrix consists of m vectors of length n (IE all vectors are the same length). */ typedef lambda_vector *lambda_matrix; -/* A transformation matrix. */ -typedef struct +DEF_VEC_P (lambda_matrix); +DEF_VEC_ALLOC_P (lambda_matrix, heap); + +/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE + matrix. Rather than use floats, we simply keep a single DENOMINATOR that + represents the denominator for every element in the matrix. */ +typedef struct lambda_trans_matrix_s { lambda_matrix matrix; int rowsize; @@ -46,8 +59,16 @@ typedef struct #define LTM_COLSIZE(T) ((T)->colsize) #define LTM_DENOMINATOR(T) ((T)->denominator) -/* A vector representing a statement in the body of a loop. */ -typedef struct +/* A vector representing a statement in the body of a loop. + The COEFFICIENTS vector contains a coefficient for each induction variable + in the loop nest containing the statement. + The DENOMINATOR represents the denominator for each coefficient in the + COEFFICIENT vector. + + This structure is used during code generation in order to rewrite the old + induction variable uses in a statement in terms of the newly created + induction variables. */ +typedef struct lambda_body_vector_s { lambda_vector coefficients; int size; @@ -57,7 +78,18 @@ typedef struct #define LBV_SIZE(T) ((T)->size) #define LBV_DENOMINATOR(T) ((T)->denominator) -/* Piecewise linear expression. */ +/* Piecewise linear expression. + This structure represents a linear expression with terms for the invariants + and induction variables of a loop. + COEFFICIENTS is a vector of coefficients for the induction variables, one + per loop in the loop nest. + CONSTANT is the constant portion of the linear expression + INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants, + one per invariant. + DENOMINATOR is the denominator for all of the coefficients and constants in + the expression. + The linear expressions can be linked together using the NEXT field, in + order to represent MAX or MIN of a group of linear expressions. */ typedef struct lambda_linear_expression_s { lambda_vector coefficients; @@ -73,11 +105,19 @@ typedef struct lambda_linear_expression_s #define LLE_DENOMINATOR(T) ((T)->denominator) #define LLE_NEXT(T) ((T)->next) -lambda_linear_expression lambda_linear_expression_new (int, int); +struct obstack; + +lambda_linear_expression lambda_linear_expression_new (int, int, + struct obstack *); void print_lambda_linear_expression (FILE *, lambda_linear_expression, int, int, char); -/* Loop structure. */ +/* Loop structure. Our loop structure consists of a constant representing the + STEP of the loop, a set of linear expressions representing the LOWER_BOUND + of the loop, a set of linear expressions representing the UPPER_BOUND of + the loop, and a set of linear expressions representing the LINEAR_OFFSET of + the loop. The linear offset is a set of linear expressions that are + applied to *both* the lower bound, and the upper bound. */ typedef struct lambda_loop_s { lambda_linear_expression lower_bound; @@ -91,8 +131,13 @@ typedef struct lambda_loop_s #define LL_LINEAR_OFFSET(T) ((T)->linear_offset) #define LL_STEP(T) ((T)->step) -/* Loop nest structure. */ -typedef struct +/* Loop nest structure. + The loop nest structure consists of a set of loop structures (defined + above) in LOOPS, along with an integer representing the DEPTH of the loop, + and an integer representing the number of INVARIANTS in the loop. Both of + these integers are used to size the associated coefficient vectors in the + linear expression structures. */ +typedef struct lambda_loopnest_s { lambda_loop *loops; int depth; @@ -103,10 +148,12 @@ typedef struct #define LN_DEPTH(T) ((T)->depth) #define LN_INVARIANTS(T) ((T)->invariants) -lambda_loopnest lambda_loopnest_new (int, int); -lambda_loopnest lambda_loopnest_transform (lambda_loopnest, lambda_trans_matrix); - -bool lambda_transform_legal_p (lambda_trans_matrix, int, varray_type); +lambda_loopnest lambda_loopnest_new (int, int, struct obstack *); +lambda_loopnest lambda_loopnest_transform (lambda_loopnest, + lambda_trans_matrix, + struct obstack *); +struct loop; +bool perfect_nest_p (struct loop *); void print_lambda_loopnest (FILE *, lambda_loopnest, char); #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s)) @@ -116,6 +163,7 @@ void print_lambda_loop (FILE *, lambda_loop, int, int, char); lambda_matrix lambda_matrix_new (int, int); void lambda_matrix_id (lambda_matrix, int); +bool lambda_matrix_id_p (lambda_matrix, int); void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int); void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int); void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int); @@ -153,21 +201,24 @@ lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix); void print_lambda_trans_matrix (FILE *, lambda_trans_matrix); void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector, lambda_vector); +bool lambda_trans_matrix_id_p (lambda_trans_matrix); -lambda_body_vector lambda_body_vector_new (int); -lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix, - lambda_body_vector); +lambda_body_vector lambda_body_vector_new (int, struct obstack *); +lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix, + lambda_body_vector, + struct obstack *); void print_lambda_body_vector (FILE *, lambda_body_vector); -struct loop; - lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *, - VEC(tree) **, - VEC(tree) **); -void lambda_loopnest_to_gcc_loopnest (struct loop *, VEC(tree) *, - VEC(tree) *, - lambda_loopnest, - lambda_trans_matrix); - + VEC(tree,heap) **, + VEC(tree,heap) **, + struct obstack *); +void lambda_loopnest_to_gcc_loopnest (struct loop *, + VEC(tree,heap) *, VEC(tree,heap) *, + VEC(gimple,heap) **, + lambda_loopnest, lambda_trans_matrix, + struct obstack *); +void remove_iv (gimple); +tree find_induction_var_from_exit_cond (struct loop *); static inline void lambda_vector_negate (lambda_vector, lambda_vector, int); static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int); @@ -188,7 +239,7 @@ static inline void print_lambda_vector (FILE *, lambda_vector, int); static inline lambda_vector lambda_vector_new (int size) { - return ggc_alloc_cleared (size * sizeof(int)); + return GGC_CNEWVEC (int, size); } @@ -282,7 +333,7 @@ lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size) return true; } -/* Return the minimum non-zero element in vector VEC1 between START and N. +/* Return the minimum nonzero element in vector VEC1 between START and N. We must have START <= N. */ static inline int @@ -290,19 +341,15 @@ lambda_vector_min_nz (lambda_vector vec1, int n, int start) { int j; int min = -1; -#ifdef ENABLE_CHECKING - if (start > n) - abort (); -#endif + + gcc_assert (start <= n); for (j = start; j < n; j++) { if (vec1[j]) if (min < 0 || vec1[j] < vec1[min]) min = j; } - - if (min < 0) - abort (); + gcc_assert (min >= 0); return min; } @@ -333,6 +380,33 @@ lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat, dest[i] += mat[j][i] * vect[j]; } +/* Compare two vectors returning an integer less than, equal to, or + greater than zero if the first argument is considered to be respectively + less than, equal to, or greater than the second. + We use the lexicographic order. */ + +static inline int +lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2, + int length2) +{ + int min_length; + int i; + + if (length1 < length2) + min_length = length1; + else + min_length = length2; + + for (i = 0; i < min_length; i++) + if (vec1[i] < vec2[i]) + return -1; + else if (vec1[i] > vec2[i]) + return 1; + else + continue; + + return length1 - length2; +} /* Print out a vector VEC of length N to OUTFILE. */ @@ -345,5 +419,107 @@ print_lambda_vector (FILE * outfile, lambda_vector vector, int n) fprintf (outfile, "%3d ", vector[i]); fprintf (outfile, "\n"); } -#endif /* LAMBDA_H */ +/* Compute the greatest common divisor of two numbers using + Euclid's algorithm. */ + +static inline int +gcd (int a, int b) +{ + int x, y, z; + + x = abs (a); + y = abs (b); + + while (x > 0) + { + z = y % x; + y = x; + x = z; + } + + return y; +} + +/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */ + +static inline int +lambda_vector_gcd (lambda_vector vector, int size) +{ + int i; + int gcd1 = 0; + + if (size > 0) + { + gcd1 = vector[0]; + for (i = 1; i < size; i++) + gcd1 = gcd (gcd1, vector[i]); + } + return gcd1; +} + +/* Returns true when the vector V is lexicographically positive, in + other words, when the first nonzero element is positive. */ + +static inline bool +lambda_vector_lexico_pos (lambda_vector v, + unsigned n) +{ + unsigned i; + for (i = 0; i < n; i++) + { + if (v[i] == 0) + continue; + if (v[i] < 0) + return false; + if (v[i] > 0) + return true; + } + return true; +} + +/* Given a vector of induction variables IVS, and a vector of + coefficients COEFS, build a tree that is a linear combination of + the induction variables. */ + +static inline tree +build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs) +{ + unsigned i; + tree iv; + tree expr = fold_convert (type, integer_zero_node); + + for (i = 0; VEC_iterate (tree, ivs, i, iv); i++) + { + int k = coefs[i]; + + if (k == 1) + expr = fold_build2 (PLUS_EXPR, type, expr, iv); + + else if (k != 0) + expr = fold_build2 (PLUS_EXPR, type, expr, + fold_build2 (MULT_EXPR, type, iv, + build_int_cst (type, k))); + } + + return expr; +} + +/* Returns the dependence level for a vector DIST of size LENGTH. + LEVEL = 0 means a lexicographic dependence, i.e. a dependence due + to the sequence of statements, not carried by any loop. */ + + +static inline unsigned +dependence_level (lambda_vector dist_vect, int length) +{ + int i; + + for (i = 0; i < length; i++) + if (dist_vect[i] != 0) + return i + 1; + + return 0; +} + +#endif /* LAMBDA_H */