X-Git-Url: http://git.sourceforge.jp/view?a=blobdiff_plain;f=gcc%2Fgraphite-clast-to-gimple.c;h=abf88778f9e42b313175acd04c140de6173d8d74;hb=c17025166b0746318646cdd7297eaa1248b00517;hp=f708c76256ed94b10dc3fdccf35b482fd6b49f28;hpb=0f5b569a8972bf209594fdfafda4bfd3b3f3ffff;p=pf3gnuchains%2Fgcc-fork.git diff --git a/gcc/graphite-clast-to-gimple.c b/gcc/graphite-clast-to-gimple.c index f708c76256e..abf88778f9e 100644 --- a/gcc/graphite-clast-to-gimple.c +++ b/gcc/graphite-clast-to-gimple.c @@ -1,5 +1,5 @@ /* Translation of CLAST (CLooG AST) to Gimple. - Copyright (C) 2009 Free Software Foundation, Inc. + Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Sebastian Pop . This file is part of GCC. @@ -21,36 +21,32 @@ along with GCC; see the file COPYING3. If not see #include "config.h" #include "system.h" #include "coretypes.h" -#include "tm.h" -#include "ggc.h" -#include "tree.h" -#include "rtl.h" -#include "basic-block.h" -#include "diagnostic.h" +#include "diagnostic-core.h" #include "tree-flow.h" -#include "toplev.h" #include "tree-dump.h" -#include "timevar.h" #include "cfgloop.h" #include "tree-chrec.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" -#include "tree-pass.h" -#include "domwalk.h" -#include "value-prof.h" -#include "pointer-set.h" -#include "gimple.h" #include "sese.h" #ifdef HAVE_cloog #include "cloog/cloog.h" #include "ppl_c.h" +#include "graphite-cloog-util.h" #include "graphite-ppl.h" -#include "graphite.h" #include "graphite-poly.h" -#include "graphite-scop-detection.h" #include "graphite-clast-to-gimple.h" #include "graphite-dependences.h" +#include "graphite-cloog-compat.h" + +#ifndef CLOOG_LANGUAGE_C +#define CLOOG_LANGUAGE_C LANGUAGE_C +#endif + +/* This flag is set when an error occurred during the translation of + CLAST to Gimple. */ +static bool gloog_error; /* Verifies properties that GRAPHITE should maintain during translation. */ @@ -60,43 +56,94 @@ graphite_verify (void) #ifdef ENABLE_CHECKING verify_loop_structure (); verify_dominators (CDI_DOMINATORS); - verify_dominators (CDI_POST_DOMINATORS); - verify_ssa (false); - verify_loop_closed_ssa (); + verify_loop_closed_ssa (true); #endif } -/* Stores the INDEX in a vector for a given clast NAME. */ +/* Stores the INDEX in a vector and the loop nesting LEVEL for a given + clast NAME. BOUND_ONE and BOUND_TWO represent the exact lower and + upper bounds that can be inferred from the polyhedral representation. */ typedef struct clast_name_index { int index; + int level; + mpz_t bound_one, bound_two; const char *name; } *clast_name_index_p; /* Returns a pointer to a new element of type clast_name_index_p built - from NAME and INDEX. */ + from NAME, INDEX, LEVEL, BOUND_ONE, and BOUND_TWO. */ static inline clast_name_index_p -new_clast_name_index (const char *name, int index) +new_clast_name_index (const char *name, int index, int level, + mpz_t bound_one, mpz_t bound_two) { clast_name_index_p res = XNEW (struct clast_name_index); res->name = name; + res->level = level; res->index = index; + mpz_init (res->bound_one); + mpz_init (res->bound_two); + mpz_set (res->bound_one, bound_one); + mpz_set (res->bound_two, bound_two); return res; } +/* Free the memory taken by a clast_name_index struct. */ + +static void +free_clast_name_index (void *ptr) +{ + struct clast_name_index *c = (struct clast_name_index *) ptr; + mpz_clear (c->bound_one); + mpz_clear (c->bound_two); + free (ptr); +} + +/* For a given clast NAME, returns -1 if NAME is not in the + INDEX_TABLE, otherwise returns the loop level for the induction + variable NAME, or if it is a parameter, the parameter number in the + vector of parameters. */ + +static inline int +clast_name_to_level (clast_name_p name, htab_t index_table) +{ + struct clast_name_index tmp; + PTR *slot; + +#ifdef CLOOG_ORG + gcc_assert (name->type == clast_expr_name); + tmp.name = ((const struct clast_name *) name)->name; +#else + tmp.name = name; +#endif + + slot = htab_find_slot (index_table, &tmp, NO_INSERT); + + if (slot && *slot) + return ((struct clast_name_index *) *slot)->level; + + return -1; +} + /* For a given clast NAME, returns -1 if it does not correspond to any parameter, or otherwise, returns the index in the PARAMS or SCATTERING_DIMENSIONS vector. */ static inline int -clast_name_to_index (const char *name, htab_t index_table) +clast_name_to_index (clast_name_p name, htab_t index_table) { struct clast_name_index tmp; PTR *slot; +#ifdef CLOOG_ORG + gcc_assert (name->type == clast_expr_name); + tmp.name = ((const struct clast_name *) name)->name; +#else tmp.name = name; +#endif + slot = htab_find_slot (index_table, &tmp, NO_INSERT); if (slot && *slot) @@ -105,45 +152,54 @@ clast_name_to_index (const char *name, htab_t index_table) return -1; } -/* Records in INDEX_TABLE the INDEX for NAME. */ +/* For a given clast NAME, initializes the lower and upper bounds BOUND_ONE + and BOUND_TWO stored in the INDEX_TABLE. Returns true when NAME has been + found in the INDEX_TABLE, false otherwise. */ -static inline void -save_clast_name_index (htab_t index_table, const char *name, int index) +static inline bool +clast_name_to_lb_ub (clast_name_p name, htab_t index_table, mpz_t bound_one, + mpz_t bound_two) { struct clast_name_index tmp; PTR *slot; +#ifdef CLOOG_ORG + gcc_assert (name->type == clast_expr_name); + tmp.name = ((const struct clast_name *) name)->name; +#else tmp.name = name; - slot = htab_find_slot (index_table, &tmp, INSERT); +#endif - if (slot) - *slot = new_clast_name_index (name, index); -} + slot = htab_find_slot (index_table, &tmp, NO_INSERT); -/* Print to stderr the element ELT. */ + if (slot && *slot) + { + mpz_set (bound_one, ((struct clast_name_index *) *slot)->bound_one); + mpz_set (bound_two, ((struct clast_name_index *) *slot)->bound_two); + return true; + } -static inline void -debug_clast_name_index (clast_name_index_p elt) -{ - fprintf (stderr, "(index = %d, name = %s)\n", elt->index, elt->name); + return false; } -/* Helper function for debug_rename_map. */ +/* Records in INDEX_TABLE the INDEX and LEVEL for NAME. */ -static inline int -debug_clast_name_indexes_1 (void **slot, void *s ATTRIBUTE_UNUSED) +static inline void +save_clast_name_index (htab_t index_table, const char *name, + int index, int level, mpz_t bound_one, mpz_t bound_two) { - struct clast_name_index *entry = (struct clast_name_index *) *slot; - debug_clast_name_index (entry); - return 1; -} + struct clast_name_index tmp; + PTR *slot; + + tmp.name = name; + slot = htab_find_slot (index_table, &tmp, INSERT); -/* Print to stderr all the elements of MAP. */ + if (slot) + { + free (*slot); -void -debug_clast_name_indexes (htab_t map) -{ - htab_traverse (map, debug_clast_name_indexes_1, NULL); + *slot = new_clast_name_index (name, index, level, bound_one, bound_two); + } } /* Computes a hash function for database element ELT. */ @@ -165,88 +221,106 @@ eq_clast_name_indexes (const void *e1, const void *e2) return (elt1->name == elt2->name); } + -/* For a given loop DEPTH in the loop nest of the original black box - PBB, return the old induction variable associated to that loop. */ - -static inline tree -pbb_to_depth_to_oldiv (poly_bb_p pbb, int depth) -{ - gimple_bb_p gbb = PBB_BLACK_BOX (pbb); - sese region = SCOP_REGION (PBB_SCOP (pbb)); - loop_p loop = gbb_loop_at_index (gbb, region, depth); - - return loop->single_iv; -} - -/* For a given scattering dimension, return the new induction variable - associated to it. */ +/* NEWIVS_INDEX binds CLooG's scattering name to the index of the tree + induction variable in NEWIVS. -static inline tree -newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth) -{ - return VEC_index (tree, newivs, depth); -} + PARAMS_INDEX binds CLooG's parameter name to the index of the tree + parameter in PARAMS. */ - +typedef struct ivs_params { + VEC (tree, heap) *params, **newivs; + htab_t newivs_index, params_index; + sese region; +} *ivs_params_p; /* Returns the tree variable from the name NAME that was given in Cloog representation. */ static tree -clast_name_to_gcc (const char *name, sese region, VEC (tree, heap) *newivs, - htab_t newivs_index, htab_t params_index) +clast_name_to_gcc (clast_name_p name, ivs_params_p ip) { int index; - VEC (tree, heap) *params = SESE_PARAMS (region); - if (params && params_index) + if (ip->params && ip->params_index) { - index = clast_name_to_index (name, params_index); + index = clast_name_to_index (name, ip->params_index); if (index >= 0) - return VEC_index (tree, params, index); + return VEC_index (tree, ip->params, index); } - gcc_assert (newivs && newivs_index); - index = clast_name_to_index (name, newivs_index); + gcc_assert (*(ip->newivs) && ip->newivs_index); + index = clast_name_to_index (name, ip->newivs_index); gcc_assert (index >= 0); - return newivs_to_depth_to_newiv (newivs, index); + return VEC_index (tree, *(ip->newivs), index); } -/* Returns the maximal precision type for expressions E1 and E2. */ +/* Returns the maximal precision type for expressions TYPE1 and TYPE2. */ -static inline tree -max_precision_type (tree e1, tree e2) +static tree +max_precision_type (tree type1, tree type2) { - tree type1 = TREE_TYPE (e1); - tree type2 = TREE_TYPE (e2); - return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2; + enum machine_mode mode; + int p1, p2, precision; + tree type; + + if (POINTER_TYPE_P (type1)) + return type1; + + if (POINTER_TYPE_P (type2)) + return type2; + + if (TYPE_UNSIGNED (type1) + && TYPE_UNSIGNED (type2)) + return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2; + + p1 = TYPE_PRECISION (type1); + p2 = TYPE_PRECISION (type2); + + if (p1 > p2) + precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1; + else + precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2; + + if (precision > BITS_PER_WORD) + { + gloog_error = true; + return integer_type_node; + } + + mode = smallest_mode_for_size (precision, MODE_INT); + precision = GET_MODE_PRECISION (mode); + type = build_nonstandard_integer_type (precision, false); + + if (!type) + { + gloog_error = true; + return integer_type_node; + } + + return type; } static tree -clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *, - htab_t, htab_t); +clast_to_gcc_expression (tree, struct clast_expr *, ivs_params_p); /* Converts a Cloog reduction expression R with reduction operation OP to a GCC expression tree of type TYPE. */ static tree clast_to_gcc_expression_red (tree type, enum tree_code op, - struct clast_reduction *r, - sese region, VEC (tree, heap) *newivs, - htab_t newivs_index, htab_t params_index) + struct clast_reduction *r, ivs_params_p ip) { int i; - tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs, - newivs_index, params_index); + tree res = clast_to_gcc_expression (type, r->elts[0], ip); tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type; for (i = 1; i < r->n; i++) { - tree t = clast_to_gcc_expression (operand_type, r->elts[i], region, - newivs, newivs_index, params_index); + tree t = clast_to_gcc_expression (operand_type, r->elts[i], ip); res = fold_build2 (op, type, res, t); } @@ -257,46 +331,60 @@ clast_to_gcc_expression_red (tree type, enum tree_code op, type TYPE. */ static tree -clast_to_gcc_expression (tree type, struct clast_expr *e, - sese region, VEC (tree, heap) *newivs, - htab_t newivs_index, htab_t params_index) +clast_to_gcc_expression (tree type, struct clast_expr *e, ivs_params_p ip) { switch (e->type) { - case expr_term: + case clast_expr_term: { struct clast_term *t = (struct clast_term *) e; if (t->var) { - if (value_one_p (t->val)) + if (mpz_cmp_si (t->val, 1) == 0) { - tree name = clast_name_to_gcc (t->var, region, newivs, - newivs_index, params_index); - return fold_convert (type, name); + tree name = clast_name_to_gcc (t->var, ip); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = convert_to_ptrofftype (name); + + name = fold_convert (type, name); + return name; } - else if (value_mone_p (t->val)) + else if (mpz_cmp_si (t->val, -1) == 0) { - tree name = clast_name_to_gcc (t->var, region, newivs, - newivs_index, params_index); + tree name = clast_name_to_gcc (t->var, ip); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = convert_to_ptrofftype (name); + name = fold_convert (type, name); + return fold_build1 (NEGATE_EXPR, type, name); } else { - tree name = clast_name_to_gcc (t->var, region, newivs, - newivs_index, params_index); + tree name = clast_name_to_gcc (t->var, ip); tree cst = gmp_cst_to_tree (type, t->val); + + if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) + name = convert_to_ptrofftype (name); + name = fold_convert (type, name); - return fold_build2 (MULT_EXPR, type, cst, name); + + if (!POINTER_TYPE_P (type)) + return fold_build2 (MULT_EXPR, type, cst, name); + + gloog_error = true; + return cst; } } else return gmp_cst_to_tree (type, t->val); } - case expr_red: + case clast_expr_red: { struct clast_reduction *r = (struct clast_reduction *) e; @@ -305,17 +393,13 @@ clast_to_gcc_expression (tree type, struct clast_expr *e, case clast_red_sum: return clast_to_gcc_expression_red (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR, - r, region, newivs, newivs_index, params_index); + r, ip); case clast_red_min: - return clast_to_gcc_expression_red (type, MIN_EXPR, r, region, - newivs, newivs_index, - params_index); + return clast_to_gcc_expression_red (type, MIN_EXPR, r, ip); case clast_red_max: - return clast_to_gcc_expression_red (type, MAX_EXPR, r, region, - newivs, newivs_index, - params_index); + return clast_to_gcc_expression_red (type, MAX_EXPR, r, ip); default: gcc_unreachable (); @@ -323,12 +407,11 @@ clast_to_gcc_expression (tree type, struct clast_expr *e, break; } - case expr_bin: + case clast_expr_bin: { struct clast_binary *b = (struct clast_binary *) e; struct clast_expr *lhs = (struct clast_expr *) b->LHS; - tree tl = clast_to_gcc_expression (type, lhs, region, newivs, - newivs_index, params_index); + tree tl = clast_to_gcc_expression (type, lhs, ip); tree tr = gmp_cst_to_tree (type, b->RHS); switch (b->type) @@ -357,55 +440,226 @@ clast_to_gcc_expression (tree type, struct clast_expr *e, return NULL_TREE; } -/* Returns the type for the expression E. */ +/* Return a type that could represent the values between BOUND_ONE and + BOUND_TWO. */ static tree -gcc_type_for_clast_expr (struct clast_expr *e, - sese region, VEC (tree, heap) *newivs, - htab_t newivs_index, htab_t params_index) +type_for_interval (mpz_t bound_one, mpz_t bound_two) { - switch (e->type) + bool unsigned_p; + tree type; + enum machine_mode mode; + int wider_precision; + int precision = MAX (mpz_sizeinbase (bound_one, 2), + mpz_sizeinbase (bound_two, 2)); + + if (precision > BITS_PER_WORD) { - case expr_term: - { - struct clast_term *t = (struct clast_term *) e; + gloog_error = true; + return integer_type_node; + } - if (t->var) - return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs, - newivs_index, params_index)); - else - return NULL_TREE; - } + if (mpz_cmp (bound_one, bound_two) <= 0) + unsigned_p = (mpz_sgn (bound_one) >= 0); + else + unsigned_p = (mpz_sgn (bound_two) >= 0); - case expr_red: - { - struct clast_reduction *r = (struct clast_reduction *) e; + mode = smallest_mode_for_size (precision, MODE_INT); + wider_precision = GET_MODE_PRECISION (mode); - if (r->n == 1) - return gcc_type_for_clast_expr (r->elts[0], region, newivs, - newivs_index, params_index); - else - { - int i; - for (i = 0; i < r->n; i++) - { - tree type = gcc_type_for_clast_expr (r->elts[i], region, - newivs, newivs_index, - params_index); - if (type) - return type; - } - return NULL_TREE; - } - } + /* As we want to generate signed types as much as possible, try to + fit the interval [bound_one, bound_two] in a signed type. For example, + supposing that we have the interval [0, 100], instead of + generating unsigned char, we want to generate a signed char. */ + if (unsigned_p && precision < wider_precision) + unsigned_p = false; - case expr_bin: - { - struct clast_binary *b = (struct clast_binary *) e; - struct clast_expr *lhs = (struct clast_expr *) b->LHS; - return gcc_type_for_clast_expr (lhs, region, newivs, - newivs_index, params_index); - } + type = build_nonstandard_integer_type (wider_precision, unsigned_p); + + if (!type) + { + gloog_error = true; + return integer_type_node; + } + + return type; +} + +/* Return a type that could represent the integer value VAL, or + otherwise return NULL_TREE. */ + +static tree +type_for_value (mpz_t val) +{ + return type_for_interval (val, val); +} + +/* Return the type for the clast_term T. Initializes BOUND_ONE and + BOUND_TWO to the bounds of the term. */ + +static tree +type_for_clast_term (struct clast_term *t, ivs_params_p ip, mpz_t bound_one, + mpz_t bound_two) +{ + clast_name_p name = t->var; + bool found = false; + + gcc_assert (t->expr.type == clast_expr_term); + + if (!name) + { + mpz_set (bound_one, t->val); + mpz_set (bound_two, t->val); + return type_for_value (t->val); + } + + if (ip->params && ip->params_index) + found = clast_name_to_lb_ub (name, ip->params_index, bound_one, bound_two); + + if (!found) + { + gcc_assert (*(ip->newivs) && ip->newivs_index); + found = clast_name_to_lb_ub (name, ip->newivs_index, + bound_one, bound_two); + gcc_assert (found); + } + + mpz_mul (bound_one, bound_one, t->val); + mpz_mul (bound_two, bound_two, t->val); + + return TREE_TYPE (clast_name_to_gcc (name, ip)); +} + +static tree +type_for_clast_expr (struct clast_expr *, ivs_params_p, mpz_t, mpz_t); + +/* Return the type for the clast_reduction R. Initializes BOUND_ONE + and BOUND_TWO to the bounds of the reduction expression. */ + +static tree +type_for_clast_red (struct clast_reduction *r, ivs_params_p ip, + mpz_t bound_one, mpz_t bound_two) +{ + int i; + tree type = type_for_clast_expr (r->elts[0], ip, bound_one, bound_two); + mpz_t b1, b2, m1, m2; + + if (r->n == 1) + return type; + + mpz_init (b1); + mpz_init (b2); + mpz_init (m1); + mpz_init (m2); + + for (i = 1; i < r->n; i++) + { + tree t = type_for_clast_expr (r->elts[i], ip, b1, b2); + type = max_precision_type (type, t); + + switch (r->type) + { + case clast_red_sum: + value_min (m1, bound_one, bound_two); + value_min (m2, b1, b2); + mpz_add (bound_one, m1, m2); + + value_max (m1, bound_one, bound_two); + value_max (m2, b1, b2); + mpz_add (bound_two, m1, m2); + break; + + case clast_red_min: + value_min (bound_one, bound_one, bound_two); + value_min (bound_two, b1, b2); + break; + + case clast_red_max: + value_max (bound_one, bound_one, bound_two); + value_max (bound_two, b1, b2); + break; + + default: + gcc_unreachable (); + break; + } + } + + mpz_clear (b1); + mpz_clear (b2); + mpz_clear (m1); + mpz_clear (m2); + + /* Return a type that can represent the result of the reduction. */ + return max_precision_type (type, type_for_interval (bound_one, bound_two)); +} + +/* Return the type for the clast_binary B used in STMT. */ + +static tree +type_for_clast_bin (struct clast_binary *b, ivs_params_p ip, mpz_t bound_one, + mpz_t bound_two) +{ + mpz_t one; + tree l = type_for_clast_expr ((struct clast_expr *) b->LHS, ip, + bound_one, bound_two); + tree r = type_for_value (b->RHS); + tree type = max_precision_type (l, r); + + switch (b->type) + { + case clast_bin_fdiv: + mpz_mdiv (bound_one, bound_one, b->RHS); + mpz_mdiv (bound_two, bound_two, b->RHS); + break; + + case clast_bin_cdiv: + mpz_mdiv (bound_one, bound_one, b->RHS); + mpz_mdiv (bound_two, bound_two, b->RHS); + mpz_init (one); + mpz_add (bound_one, bound_one, one); + mpz_add (bound_two, bound_two, one); + mpz_clear (one); + break; + + case clast_bin_div: + mpz_div (bound_one, bound_one, b->RHS); + mpz_div (bound_two, bound_two, b->RHS); + break; + + case clast_bin_mod: + mpz_mod (bound_one, bound_one, b->RHS); + mpz_mod (bound_two, bound_two, b->RHS); + break; + + default: + gcc_unreachable (); + } + + /* Return a type that can represent the result of the reduction. */ + return max_precision_type (type, type_for_interval (bound_one, bound_two)); +} + +/* Returns the type for the CLAST expression E when used in statement + STMT. */ + +static tree +type_for_clast_expr (struct clast_expr *e, ivs_params_p ip, mpz_t bound_one, + mpz_t bound_two) +{ + switch (e->type) + { + case clast_expr_term: + return type_for_clast_term ((struct clast_term *) e, ip, + bound_one, bound_two); + + case clast_expr_red: + return type_for_clast_red ((struct clast_reduction *) e, ip, + bound_one, bound_two); + + case clast_expr_bin: + return type_for_clast_bin ((struct clast_binary *) e, ip, + bound_one, bound_two); default: gcc_unreachable (); @@ -417,34 +671,32 @@ gcc_type_for_clast_expr (struct clast_expr *e, /* Returns the type for the equation CLEQ. */ static tree -gcc_type_for_clast_eq (struct clast_equation *cleq, - sese region, VEC (tree, heap) *newivs, - htab_t newivs_index, htab_t params_index) +type_for_clast_eq (struct clast_equation *cleq, ivs_params_p ip) { - tree type = gcc_type_for_clast_expr (cleq->LHS, region, newivs, - newivs_index, params_index); - if (type) - return type; + mpz_t bound_one, bound_two; + tree l, r; + + mpz_init (bound_one); + mpz_init (bound_two); + + l = type_for_clast_expr (cleq->LHS, ip, bound_one, bound_two); + r = type_for_clast_expr (cleq->RHS, ip, bound_one, bound_two); - return gcc_type_for_clast_expr (cleq->RHS, region, newivs, newivs_index, - params_index); + mpz_clear (bound_one); + mpz_clear (bound_two); + return max_precision_type (l, r); } /* Translates a clast equation CLEQ to a tree. */ static tree -graphite_translate_clast_equation (sese region, - struct clast_equation *cleq, - VEC (tree, heap) *newivs, - htab_t newivs_index, htab_t params_index) +graphite_translate_clast_equation (struct clast_equation *cleq, + ivs_params_p ip) { enum tree_code comp; - tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index, - params_index); - tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs, - newivs_index, params_index); - tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs, - newivs_index, params_index); + tree type = type_for_clast_eq (cleq, ip); + tree lhs = clast_to_gcc_expression (type, cleq->LHS, ip); + tree rhs = clast_to_gcc_expression (type, cleq->RHS, ip); if (cleq->sign == 0) comp = EQ_EXPR; @@ -461,18 +713,15 @@ graphite_translate_clast_equation (sese region, /* Creates the test for the condition in STMT. */ static tree -graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt, - VEC (tree, heap) *newivs, - htab_t newivs_index, htab_t params_index) +graphite_create_guard_cond_expr (struct clast_guard *stmt, + ivs_params_p ip) { tree cond = NULL; int i; for (i = 0; i < stmt->n; i++) { - tree eq = graphite_translate_clast_equation (region, &stmt->eq[i], - newivs, newivs_index, - params_index); + tree eq = graphite_translate_clast_equation (&stmt->eq[i], ip); if (cond) cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq); @@ -486,19 +735,80 @@ graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt, /* Creates a new if region corresponding to Cloog's guard. */ static edge -graphite_create_new_guard (sese region, edge entry_edge, - struct clast_guard *stmt, - VEC (tree, heap) *newivs, - htab_t newivs_index, htab_t params_index) +graphite_create_new_guard (edge entry_edge, struct clast_guard *stmt, + ivs_params_p ip) { - tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs, - newivs_index, params_index); + tree cond_expr = graphite_create_guard_cond_expr (stmt, ip); edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); return exit_edge; } +/* Compute the lower bound LOW and upper bound UP for the parameter + PARAM in scop SCOP based on the constraints in the context. */ + +static void +compute_bounds_for_param (scop_p scop, int param, mpz_t low, mpz_t up) +{ + ppl_Linear_Expression_t le; + + /* Prepare the linear expression corresponding to the parameter that + we want to maximize/minimize. */ + ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop)); + ppl_set_coef (le, param, 1); + + ppl_max_for_le_pointset (SCOP_CONTEXT (scop), le, up); + ppl_min_for_le_pointset (SCOP_CONTEXT (scop), le, low); + ppl_delete_Linear_Expression (le); +} + +/* Compute the lower bound LOW and upper bound UP for the induction + variable at LEVEL for the statement PBB, based on the transformed + scattering of PBB: T|I|G|Cst, with T the scattering transform, I + the iteration domain, and G the context parameters. */ + +static void +compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up) +{ + ppl_Pointset_Powerset_C_Polyhedron_t ps; + ppl_Linear_Expression_t le; + + combine_context_id_scat (&ps, pbb, false); + + /* Prepare the linear expression corresponding to the level that we + want to maximize/minimize. */ + { + ppl_dimension_type dim = pbb_nb_scattering_transform (pbb) + + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb); + + ppl_new_Linear_Expression_with_dimension (&le, dim); + ppl_set_coef (le, psct_dynamic_dim (pbb, level), 1); + } + + ppl_max_for_le_pointset (ps, le, up); + ppl_min_for_le_pointset (ps, le, low); + ppl_delete_Linear_Expression (le); + ppl_delete_Pointset_Powerset_C_Polyhedron (ps); +} + /* Walks a CLAST and returns the first statement in the body of a - loop. */ + loop. + + FIXME: This function should not be used to get a PBB in the STMT + loop in order to find out the iteration domain of the loop: the + counter example from Tobias is: + + | for (i = 0; i < 100; i++) + | { + | if (i == 0) + | S1; + | S2; + | } + + This function would return S1 whose iteration domain contains only + one point "i = 0", whereas the iteration domain of S2 has 100 points. + + This should be implemented using some functionality existing in + CLooG-ISL. */ static struct clast_user_stmt * clast_get_body_of_loop (struct clast_stmt *stmt) @@ -516,41 +826,31 @@ clast_get_body_of_loop (struct clast_stmt *stmt) if (CLAST_STMT_IS_A (stmt, stmt_block)) return clast_get_body_of_loop (((struct clast_block *) stmt)->body); + if (CLAST_STMT_IS_A (stmt, stmt_ass)) + return clast_get_body_of_loop (stmt->next); + gcc_unreachable (); } -/* Given a CLOOG_IV, returns the type that it should have in GCC land. - If the information is not available, i.e. in the case one of the - transforms created the loop, just return integer_type_node. */ +/* Returns the type for the induction variable for the loop translated + from STMT_FOR. */ static tree -gcc_type_for_cloog_iv (const char *cloog_iv, gimple_bb_p gbb) +type_for_clast_for (struct clast_for *stmt_for, ivs_params_p ip) { - struct ivtype_map_elt_s tmp; - PTR *slot; + mpz_t bound_one, bound_two; + tree lb_type, ub_type; - tmp.cloog_iv = cloog_iv; - slot = htab_find_slot (GBB_CLOOG_IV_TYPES (gbb), &tmp, NO_INSERT); + mpz_init (bound_one); + mpz_init (bound_two); - if (slot && *slot) - return ((ivtype_map_elt) *slot)->type; + lb_type = type_for_clast_expr (stmt_for->LB, ip, bound_one, bound_two); + ub_type = type_for_clast_expr (stmt_for->UB, ip, bound_one, bound_two); - return integer_type_node; -} - -/* Returns the induction variable for the loop that gets translated to - STMT. */ + mpz_clear (bound_one); + mpz_clear (bound_two); -static tree -gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for) -{ - struct clast_stmt *stmt = (struct clast_stmt *) stmt_for; - struct clast_user_stmt *body = clast_get_body_of_loop (stmt); - const char *cloog_iv = stmt_for->iterator; - CloogStatement *cs = body->statement; - poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); - - return gcc_type_for_cloog_iv (cloog_iv, PBB_BLACK_BOX (pbb)); + return max_precision_type (lb_type, ub_type); } /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an @@ -559,19 +859,19 @@ gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for) becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds CLooG's scattering name to the induction variable created for the loop of STMT. The new induction variable is inserted in the NEWIVS - vector. */ + vector and is of type TYPE. */ static struct loop * -graphite_create_new_loop (sese region, edge entry_edge, - struct clast_for *stmt, - loop_p outer, VEC (tree, heap) **newivs, - htab_t newivs_index, htab_t params_index) +graphite_create_new_loop (edge entry_edge, struct clast_for *stmt, + loop_p outer, tree type, tree lb, tree ub, + int level, ivs_params_p ip) { - tree type = gcc_type_for_iv_of_clast_loop (stmt); - tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs, - newivs_index, params_index); - tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs, - newivs_index, params_index); + mpz_t low, up; + + struct clast_user_stmt *body + = clast_get_body_of_loop ((struct clast_stmt *) stmt); + poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (body->statement); + tree stride = gmp_cst_to_tree (type, stmt->stride); tree ivvar = create_tmp_var (type, "graphite_IV"); tree iv, iv_after_increment; @@ -581,61 +881,50 @@ graphite_create_new_loop (sese region, edge entry_edge, add_referenced_var (ivvar); - save_clast_name_index (newivs_index, stmt->iterator, - VEC_length (tree, *newivs)); - VEC_safe_push (tree, heap, *newivs, iv); + mpz_init (low); + mpz_init (up); + compute_bounds_for_level (pbb, level, low, up); + save_clast_name_index (ip->newivs_index, stmt->iterator, + VEC_length (tree, *(ip->newivs)), level, low, up); + mpz_clear (low); + mpz_clear (up); + VEC_safe_push (tree, heap, *(ip->newivs), iv); return loop; } -/* Inserts in MAP a tuple (OLD_NAME, NEW_NAME) for the induction - variables of the loops around GBB in SESE. */ +/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the + induction variables of the loops around GBB in SESE. */ static void -build_iv_mapping (htab_t map, sese region, - VEC (tree, heap) *newivs, htab_t newivs_index, - struct clast_user_stmt *user_stmt, - htab_t params_index) +build_iv_mapping (VEC (tree, heap) *iv_map, struct clast_user_stmt *user_stmt, + ivs_params_p ip) { struct clast_stmt *t; - int index = 0; + int depth = 0; CloogStatement *cs = user_stmt->statement; poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); + gimple_bb_p gbb = PBB_BLACK_BOX (pbb); + mpz_t bound_one, bound_two; + + mpz_init (bound_one); + mpz_init (bound_two); - for (t = user_stmt->substitutions; t; t = t->next, index++) + for (t = user_stmt->substitutions; t; t = t->next, depth++) { struct clast_expr *expr = (struct clast_expr *) ((struct clast_assignment *)t)->RHS; - tree type = gcc_type_for_clast_expr (expr, region, newivs, - newivs_index, params_index); - tree old_name = pbb_to_depth_to_oldiv (pbb, index); - tree e = clast_to_gcc_expression (type, expr, region, newivs, - newivs_index, params_index); - set_rename (map, old_name, e); - } -} - -/* Helper function for htab_traverse. */ + tree type = type_for_clast_expr (expr, ip, bound_one, bound_two); + tree new_name = clast_to_gcc_expression (type, expr, ip); + loop_p old_loop = gbb_loop_at_index (gbb, ip->region, depth); -static int -copy_renames (void **slot, void *s) -{ - struct rename_map_elt_s *entry = (struct rename_map_elt_s *) *slot; - htab_t res = (htab_t) s; - tree old_name = entry->old_name; - tree expr = entry->expr; - struct rename_map_elt_s tmp; - PTR *x; - - tmp.old_name = old_name; - x = htab_find_slot (res, &tmp, INSERT); - - if (!*x) - *x = new_rename_map_elt (old_name, expr); + VEC_replace (tree, iv_map, old_loop->num, new_name); + } - return 1; + mpz_clear (bound_one); + mpz_clear (bound_two); } -/* Construct bb_pbb_def with BB and PBB. */ +/* Construct bb_pbb_def with BB and PBB. */ static bb_pbb_def * new_bb_pbb_def (basic_block bb, poly_bb_p pbb) @@ -660,7 +949,7 @@ mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping) tmp.bb = bb; x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT); - if (!*x) + if (x && !*x) *x = new_bb_pbb_def (bb, pbb); } @@ -681,7 +970,7 @@ find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb) return NULL; } -/* Check data dependency in LOOP at scattering level LEVEL. +/* Check data dependency in LOOP at level LEVEL. BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping. */ @@ -718,63 +1007,96 @@ dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level) return false; } -static edge -translate_clast (sese, loop_p, struct clast_stmt *, edge, htab_t, - VEC (tree, heap) **, htab_t, htab_t, int, htab_t); - /* Translates a clast user statement STMT to gimple. - - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - CONTEXT_LOOP is the loop in which the generated code will be placed - - RENAME_MAP contains a set of tuples of new names associated to - the original variables names. - - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - - PARAMS_INDEX connects the cloog parameters with the gimple parameters in - the sese region. */ + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + static edge -translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e, - htab_t rename_map, VEC (tree, heap) **newivs, - htab_t newivs_index, htab_t bb_pbb_mapping, - htab_t params_index) +translate_clast_user (struct clast_user_stmt *stmt, edge next_e, + htab_t bb_pbb_mapping, ivs_params_p ip) { - gimple_bb_p gbb; + int i, nb_loops; basic_block new_bb; poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement); - gbb = PBB_BLACK_BOX (pbb); + gimple_bb_p gbb = PBB_BLACK_BOX (pbb); + VEC (tree, heap) *iv_map; if (GBB_BB (gbb) == ENTRY_BLOCK_PTR) return next_e; - build_iv_mapping (rename_map, region, *newivs, newivs_index, stmt, - params_index); - next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region, - next_e, rename_map); + nb_loops = number_of_loops (); + iv_map = VEC_alloc (tree, heap, nb_loops); + for (i = 0; i < nb_loops; i++) + VEC_quick_push (tree, iv_map, NULL_TREE); + + build_iv_mapping (iv_map, stmt, ip); + next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), ip->region, + next_e, iv_map, &gloog_error); + VEC_free (tree, heap, iv_map); + new_bb = next_e->src; mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping); update_ssa (TODO_update_ssa); + return next_e; } -/* Translates a clast for statement STMT to gimple. +/* Creates a new if region protecting the loop to be executed, if the execution + count is zero (lb > ub). */ + +static edge +graphite_create_new_loop_guard (edge entry_edge, struct clast_for *stmt, + tree *type, tree *lb, tree *ub, + ivs_params_p ip) +{ + tree cond_expr; + edge exit_edge; + + *type = type_for_clast_for (stmt, ip); + *lb = clast_to_gcc_expression (*type, stmt->LB, ip); + *ub = clast_to_gcc_expression (*type, stmt->UB, ip); + + /* When ub is simply a constant or a parameter, use lb <= ub. */ + if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME) + cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub); + else + { + tree one = (POINTER_TYPE_P (*type) + ? convert_to_ptrofftype (integer_one_node) + : fold_convert (*type, integer_one_node)); + /* Adding +1 and using LT_EXPR helps with loop latches that have a + loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes + 2^k-1 due to integer overflow, and the condition lb <= ub is true, + even if we do not want this. However lb < ub + 1 is false, as + expected. */ + tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR + : PLUS_EXPR, *type, *ub, one); + + cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one); + } + + exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); + + return exit_edge; +} + +static edge +translate_clast (loop_p, struct clast_stmt *, edge, htab_t, int, ivs_params_p); + +/* Create the loop for a clast for statement. - - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - - CONTEXT_LOOP is the loop in which the generated code will be placed - - RENAME_MAP contains a set of tuples of new names associated to - the original variables names. - - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - - PARAMS_INDEX connects the cloog parameters with the gimple parameters in - the sese region. */ + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + static edge -translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt, - edge next_e, htab_t rename_map, VEC (tree, heap) **newivs, - htab_t newivs_index, htab_t bb_pbb_mapping, int level, - htab_t params_index) +translate_clast_for_loop (loop_p context_loop, struct clast_for *stmt, + edge next_e, htab_t bb_pbb_mapping, int level, + tree type, tree lb, tree ub, ivs_params_p ip) { - struct loop *loop = graphite_create_new_loop (region, next_e, stmt, - context_loop, newivs, - newivs_index, params_index); + struct loop *loop = graphite_create_new_loop (next_e, stmt, context_loop, + type, lb, ub, level, ip); edge last_e = single_exit (loop); edge to_body = single_succ_edge (loop->header); basic_block after = to_body->dest; @@ -783,62 +1105,93 @@ translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt, last_e = single_succ_edge (split_edge (last_e)); /* Translate the body of the loop. */ - next_e = translate_clast (region, loop, stmt->body, to_body, rename_map, - newivs, newivs_index, bb_pbb_mapping, level + 1, - params_index); + next_e = translate_clast (loop, stmt->body, to_body, bb_pbb_mapping, + level + 1, ip); redirect_edge_succ_nodup (next_e, after); set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); - /* Remove from rename_map all the tuples containing variables - defined in loop's body. */ - insert_loop_close_phis (rename_map, loop); - if (flag_loop_parallelize_all - && !dependency_in_loop_p (loop, bb_pbb_mapping, - get_scattering_level (level))) + && !dependency_in_loop_p (loop, bb_pbb_mapping, level)) loop->can_be_parallel = true; return last_e; } -/* Translates a clast guard statement STMT to gimple. +/* Translates a clast for statement STMT to gimple. First a guard is created + protecting the loop, if it is executed zero times. In this guard we create + the real loop structure. - - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - - CONTEXT_LOOP is the loop in which the generated code will be placed - - RENAME_MAP contains a set of tuples of new names associated to - the original variables names. - - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - - PARAMS_INDEX connects the cloog parameters with the gimple parameters in - the sese region. */ + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + static edge -translate_clast_guard (sese region, loop_p context_loop, - struct clast_guard *stmt, edge next_e, - htab_t rename_map, VEC (tree, heap) **newivs, - htab_t newivs_index, htab_t bb_pbb_mapping, int level, - htab_t params_index) +translate_clast_for (loop_p context_loop, struct clast_for *stmt, edge next_e, + htab_t bb_pbb_mapping, int level, ivs_params_p ip) { - edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs, - newivs_index, params_index); - + tree type, lb, ub; + edge last_e = graphite_create_new_loop_guard (next_e, stmt, &type, + &lb, &ub, ip); edge true_e = get_true_edge_from_guard_bb (next_e->dest); - edge false_e = get_false_edge_from_guard_bb (next_e->dest); - edge exit_true_e = single_succ_edge (true_e->dest); - edge exit_false_e = single_succ_edge (false_e->dest); - htab_t before_guard = htab_create (10, rename_map_elt_info, - eq_rename_map_elts, free); - htab_traverse (rename_map, copy_renames, before_guard); + translate_clast_for_loop (context_loop, stmt, true_e, bb_pbb_mapping, level, + type, lb, ub, ip); + return last_e; +} + +/* Translates a clast assignment STMT to gimple. + + - NEXT_E is the edge where new generated code should be attached. + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + +static edge +translate_clast_assignment (struct clast_assignment *stmt, edge next_e, + int level, ivs_params_p ip) +{ + gimple_seq stmts; + mpz_t bound_one, bound_two; + tree type, new_name, var; + edge res = single_succ_edge (split_edge (next_e)); + struct clast_expr *expr = (struct clast_expr *) stmt->RHS; + + mpz_init (bound_one); + mpz_init (bound_two); + type = type_for_clast_expr (expr, ip, bound_one, bound_two); + var = create_tmp_var (type, "graphite_var"); + new_name = force_gimple_operand (clast_to_gcc_expression (type, expr, ip), + &stmts, true, var); + add_referenced_var (var); + if (stmts) + { + gsi_insert_seq_on_edge (next_e, stmts); + gsi_commit_edge_inserts (); + } + + save_clast_name_index (ip->newivs_index, stmt->LHS, + VEC_length (tree, *(ip->newivs)), level, + bound_one, bound_two); + VEC_safe_push (tree, heap, *(ip->newivs), new_name); - next_e = translate_clast (region, context_loop, stmt->then, true_e, - rename_map, newivs, newivs_index, bb_pbb_mapping, - level, params_index); + mpz_clear (bound_one); + mpz_clear (bound_two); - insert_guard_phis (last_e->src, exit_true_e, exit_false_e, - before_guard, rename_map); + return res; +} + +/* Translates a clast guard statement STMT to gimple. + + - NEXT_E is the edge where new generated code should be attached. + - CONTEXT_LOOP is the loop in which the generated code will be placed + - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ - htab_delete (before_guard); +static edge +translate_clast_guard (loop_p context_loop, struct clast_guard *stmt, + edge next_e, htab_t bb_pbb_mapping, int level, + ivs_params_p ip) +{ + edge last_e = graphite_create_new_guard (next_e, stmt, ip); + edge true_e = get_true_edge_from_guard_bb (next_e->dest); + translate_clast (context_loop, stmt->then, true_e, bb_pbb_mapping, level, ip); return last_e; } @@ -847,14 +1200,11 @@ translate_clast_guard (sese region, loop_p context_loop, - NEXT_E is the edge where new generated code should be attached. - CONTEXT_LOOP is the loop in which the generated code will be placed - - RENAME_MAP contains a set of tuples of new names associated to - the original variables names. - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ + static edge -translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt, - edge next_e, htab_t rename_map, VEC (tree, heap) **newivs, - htab_t newivs_index, htab_t bb_pbb_mapping, int level, - htab_t params_index) +translate_clast (loop_p context_loop, struct clast_stmt *stmt, edge next_e, + htab_t bb_pbb_mapping, int level, ivs_params_p ip) { if (!stmt) return next_e; @@ -863,169 +1213,45 @@ translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt, ; /* Do nothing. */ else if (CLAST_STMT_IS_A (stmt, stmt_user)) - next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt, - next_e, rename_map, newivs, newivs_index, - bb_pbb_mapping, params_index); + next_e = translate_clast_user ((struct clast_user_stmt *) stmt, + next_e, bb_pbb_mapping, ip); else if (CLAST_STMT_IS_A (stmt, stmt_for)) - next_e = translate_clast_for (region, context_loop, - (struct clast_for *) stmt, next_e, - rename_map, newivs, newivs_index, - bb_pbb_mapping, level, params_index); + next_e = translate_clast_for (context_loop, (struct clast_for *) stmt, + next_e, bb_pbb_mapping, level, ip); else if (CLAST_STMT_IS_A (stmt, stmt_guard)) - next_e = translate_clast_guard (region, context_loop, - (struct clast_guard *) stmt, next_e, - rename_map, newivs, newivs_index, - bb_pbb_mapping, level, params_index); + next_e = translate_clast_guard (context_loop, (struct clast_guard *) stmt, + next_e, bb_pbb_mapping, level, ip); else if (CLAST_STMT_IS_A (stmt, stmt_block)) - next_e = translate_clast (region, context_loop, - ((struct clast_block *) stmt)->body, - next_e, rename_map, newivs, newivs_index, - bb_pbb_mapping, level, params_index); + next_e = translate_clast (context_loop, ((struct clast_block *) stmt)->body, + next_e, bb_pbb_mapping, level, ip); + + else if (CLAST_STMT_IS_A (stmt, stmt_ass)) + next_e = translate_clast_assignment ((struct clast_assignment *) stmt, + next_e, level, ip); else gcc_unreachable(); recompute_all_dominators (); graphite_verify (); - return translate_clast (region, context_loop, stmt->next, next_e, - rename_map, newivs, newivs_index, - bb_pbb_mapping, level, params_index); -} - -/* Returns the first cloog name used in EXPR. */ - -static const char * -find_cloog_iv_in_expr (struct clast_expr *expr) -{ - struct clast_term *term = (struct clast_term *) expr; - - if (expr->type == expr_term - && !term->var) - return NULL; - - if (expr->type == expr_term) - return term->var; - - if (expr->type == expr_red) - { - int i; - struct clast_reduction *red = (struct clast_reduction *) expr; - - for (i = 0; i < red->n; i++) - { - const char *res = find_cloog_iv_in_expr ((red)->elts[i]); - - if (res) - return res; - } - } - - return NULL; -} - -/* Build for a clast_user_stmt USER_STMT a map between the CLAST - induction variables and the corresponding GCC old induction - variables. This information is stored on each GRAPHITE_BB. */ - -static void -compute_cloog_iv_types_1 (poly_bb_p pbb, struct clast_user_stmt *user_stmt) -{ - gimple_bb_p gbb = PBB_BLACK_BOX (pbb); - struct clast_stmt *t; - int index = 0; - - for (t = user_stmt->substitutions; t; t = t->next, index++) - { - PTR *slot; - struct ivtype_map_elt_s tmp; - struct clast_expr *expr = (struct clast_expr *) - ((struct clast_assignment *)t)->RHS; - - /* Create an entry (clast_var, type). */ - tmp.cloog_iv = find_cloog_iv_in_expr (expr); - if (!tmp.cloog_iv) - continue; - - slot = htab_find_slot (GBB_CLOOG_IV_TYPES (gbb), &tmp, INSERT); - - if (!*slot) - { - tree oldiv = pbb_to_depth_to_oldiv (pbb, index); - tree type = oldiv ? TREE_TYPE (oldiv) : integer_type_node; - *slot = new_ivtype_map_elt (tmp.cloog_iv, type); - } - } -} - -/* Walk the CLAST tree starting from STMT and build for each - clast_user_stmt a map between the CLAST induction variables and the - corresponding GCC old induction variables. This information is - stored on each GRAPHITE_BB. */ - -static void -compute_cloog_iv_types (struct clast_stmt *stmt) -{ - if (!stmt) - return; - - if (CLAST_STMT_IS_A (stmt, stmt_root)) - goto next; - - if (CLAST_STMT_IS_A (stmt, stmt_user)) - { - CloogStatement *cs = ((struct clast_user_stmt *) stmt)->statement; - poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); - gimple_bb_p gbb = PBB_BLACK_BOX (pbb); - - if (!GBB_CLOOG_IV_TYPES (gbb)) - GBB_CLOOG_IV_TYPES (gbb) = htab_create (10, ivtype_map_elt_info, - eq_ivtype_map_elts, free); - - compute_cloog_iv_types_1 (pbb, (struct clast_user_stmt *) stmt); - goto next; - } - - if (CLAST_STMT_IS_A (stmt, stmt_for)) - { - struct clast_stmt *s = ((struct clast_for *) stmt)->body; - compute_cloog_iv_types (s); - goto next; - } - - if (CLAST_STMT_IS_A (stmt, stmt_guard)) - { - struct clast_stmt *s = ((struct clast_guard *) stmt)->then; - compute_cloog_iv_types (s); - goto next; - } - - if (CLAST_STMT_IS_A (stmt, stmt_block)) - { - struct clast_stmt *s = ((struct clast_block *) stmt)->body; - compute_cloog_iv_types (s); - goto next; - } - - gcc_unreachable (); - - next: - compute_cloog_iv_types (stmt->next); + return translate_clast (context_loop, stmt->next, next_e, bb_pbb_mapping, + level, ip); } /* Free the SCATTERING domain list. */ static void -free_scattering (CloogDomainList *scattering) +free_scattering (CloogScatteringList *scattering) { while (scattering) { - CloogDomain *dom = cloog_domain (scattering); - CloogDomainList *next = cloog_next_domain (scattering); + CloogScattering *dom = cloog_scattering (scattering); + CloogScatteringList *next = cloog_next_scattering (scattering); - cloog_domain_free (dom); + cloog_scattering_free (dom); free (scattering); scattering = next; } @@ -1051,7 +1277,7 @@ initialize_cloog_names (scop_p scop, CloogProgram *prog) for (i = 0; i < nb_parameters; i++) { - tree param = VEC_index (tree, SESE_PARAMS(region), i); + tree param = VEC_index (tree, SESE_PARAMS (region), i); const char *name = get_name (param); int len; @@ -1092,31 +1318,59 @@ initialize_cloog_names (scop_p scop, CloogProgram *prog) scattering); } +/* Initialize a CLooG input file. */ + +static FILE * +init_cloog_input_file (int scop_number) +{ + FILE *graphite_out_file; + int len = strlen (dump_base_name); + char *dumpname = XNEWVEC (char, len + 25); + char *s_scop_number = XNEWVEC (char, 15); + + memcpy (dumpname, dump_base_name, len + 1); + strip_off_ending (dumpname, len); + sprintf (s_scop_number, ".%d", scop_number); + strcat (dumpname, s_scop_number); + strcat (dumpname, ".cloog"); + graphite_out_file = fopen (dumpname, "w+b"); + + if (graphite_out_file == 0) + fatal_error ("can%'t open %s for writing: %m", dumpname); + + free (dumpname); + + return graphite_out_file; +} + /* Build cloog program for SCoP. */ static void -build_cloog_prog (scop_p scop, CloogProgram *prog) +build_cloog_prog (scop_p scop, CloogProgram *prog, + CloogOptions *options) { int i; int max_nb_loops = scop_max_loop_depth (scop); poly_bb_p pbb; CloogLoop *loop_list = NULL; CloogBlockList *block_list = NULL; - CloogDomainList *scattering = NULL; + CloogScatteringList *scattering = NULL; int nbs = 2 * max_nb_loops + 1; int *scaldims; cloog_program_set_context - (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop))); + (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop), + scop_nb_params (scop), cloog_state)); nbs = unify_scattering_dimensions (scop); scaldims = (int *) xmalloc (nbs * (sizeof (int))); cloog_program_set_nb_scattdims (prog, nbs); initialize_cloog_names (scop, prog); - for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++) + FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb) { CloogStatement *stmt; CloogBlock *block; + CloogDomain *dom; /* Dead code elimination: when the domain of a PBB is empty, don't generate code for the PBB. */ @@ -1124,17 +1378,18 @@ build_cloog_prog (scop_p scop, CloogProgram *prog) continue; /* Build the new statement and its block. */ - stmt = cloog_statement_alloc (pbb_index (pbb)); + stmt = cloog_statement_alloc (cloog_state, pbb_index (pbb)); + dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb), + scop_nb_params (scop), + cloog_state); block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb)); cloog_statement_set_usr (stmt, pbb); /* Build loop list. */ { - CloogLoop *new_loop_list = cloog_loop_malloc (); + CloogLoop *new_loop_list = cloog_loop_malloc (cloog_state); cloog_loop_set_next (new_loop_list, loop_list); - cloog_loop_set_domain - (new_loop_list, - new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb))); + cloog_loop_set_domain (new_loop_list, dom); cloog_loop_set_block (new_loop_list, block); loop_list = new_loop_list; } @@ -1151,16 +1406,18 @@ build_cloog_prog (scop_p scop, CloogProgram *prog) /* Build scattering list. */ { /* XXX: Replace with cloog_domain_list_alloc(), when available. */ - CloogDomainList *new_scattering - = (CloogDomainList *) xmalloc (sizeof (CloogDomainList)); + CloogScatteringList *new_scattering + = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList)); ppl_Polyhedron_t scat; - CloogDomain *dom; + CloogScattering *dom; scat = PBB_TRANSFORMED_SCATTERING (pbb); - dom = new_Cloog_Domain_from_ppl_Polyhedron (scat); + dom = new_Cloog_Scattering_from_ppl_Polyhedron + (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb), + cloog_state); - cloog_set_next_domain (new_scattering, scattering); - cloog_set_domain (new_scattering, dom); + cloog_set_next_scattering (new_scattering, scattering); + cloog_set_scattering (new_scattering, dom); scattering = new_scattering; } } @@ -1174,10 +1431,21 @@ build_cloog_prog (scop_p scop, CloogProgram *prog) cloog_program_set_scaldims (prog, scaldims); /* Extract scalar dimensions to simplify the code generation problem. */ - cloog_program_extract_scalars (prog, scattering); + cloog_program_extract_scalars (prog, scattering, options); + + /* Dump a .cloog input file, if requested. This feature is only + enabled in the Graphite branch. */ + if (0) + { + static size_t file_scop_number = 0; + FILE *cloog_file = init_cloog_input_file (file_scop_number); + + cloog_program_dump_cloog (cloog_file, prog, scattering); + ++file_scop_number; + } /* Apply scattering. */ - cloog_program_scatter (prog, scattering); + cloog_program_scatter (prog, scattering, options); free_scattering (scattering); /* Iterators corresponding to scalar dimensions have to be extracted. */ @@ -1205,12 +1473,12 @@ build_cloog_prog (scop_p scop, CloogProgram *prog) static CloogOptions * set_cloog_options (void) { - CloogOptions *options = cloog_options_malloc (); + CloogOptions *options = cloog_options_malloc (cloog_state); /* Change cloog output language to C. If we do use FORTRAN instead, cloog will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if we pass an incomplete program to cloog. */ - options->language = LANGUAGE_C; + options->language = CLOOG_LANGUAGE_C; /* Enable complex equality spreading: removes dummy statements (assignments) in the generated code which repeats the @@ -1218,9 +1486,14 @@ set_cloog_options (void) GLooG. */ options->esp = 1; +#ifdef CLOOG_ORG + /* Silence CLooG to avoid failing tests due to debug output to stderr. */ + options->quiet = 1; +#else /* Enable C pretty-printing mode: normalizes the substitution equations for statements. */ options->cpp = 1; +#endif /* Allow cloog to build strides with a stride width different to one. This example has stride = 4: @@ -1251,13 +1524,13 @@ print_clast_stmt (FILE *file, struct clast_stmt *stmt) { CloogOptions *options = set_cloog_options (); - pprint (file, stmt, 0, options); + clast_pprint (file, stmt, 0, options); cloog_options_free (options); } /* Prints STMT to STDERR. */ -void +DEBUG_FUNCTION void debug_clast_stmt (struct clast_stmt *stmt) { print_clast_stmt (stderr, stmt); @@ -1275,7 +1548,7 @@ scop_to_clast (scop_p scop) /* Connect new cloog prog generation to graphite. */ pc.prog = cloog_program_malloc (); - build_cloog_prog (scop, pc.prog); + build_cloog_prog (scop, pc.prog, options); pc.prog = cloog_program_generate (pc.prog, options); pc.stmt = cloog_clast_create (pc.prog, options); @@ -1289,6 +1562,7 @@ void print_generated_program (FILE *file, scop_p scop) { CloogOptions *options = set_cloog_options (); + cloog_prog_clast pc = scop_to_clast (scop); fprintf (file, " (prog: \n"); @@ -1296,7 +1570,7 @@ print_generated_program (FILE *file, scop_p scop) fprintf (file, " )\n"); fprintf (file, " (clast: \n"); - pprint (file, pc.stmt, 0, options); + clast_pprint (file, pc.stmt, 0, options); fprintf (file, " )\n"); cloog_options_free (options); @@ -1306,24 +1580,35 @@ print_generated_program (FILE *file, scop_p scop) /* Prints to STDERR the code generated by CLooG for SCOP. */ -void +DEBUG_FUNCTION void debug_generated_program (scop_p scop) { print_generated_program (stderr, scop); } -/* Add CLooG names to parameter index. The index is used to translate back from - * CLooG names to GCC trees. */ +/* Add CLooG names to parameter index. The index is used to translate + back from CLooG names to GCC trees. */ static void -create_params_index (htab_t index_table, CloogProgram *prog) { +create_params_index (scop_p scop, htab_t index_table, CloogProgram *prog) { CloogNames* names = cloog_program_names (prog); int nb_parameters = cloog_names_nb_parameters (names); char **parameters = cloog_names_parameters (names); int i; + mpz_t bound_one, bound_two; + + mpz_init (bound_one); + mpz_init (bound_two); for (i = 0; i < nb_parameters; i++) - save_clast_name_index (index_table, parameters[i], i); + { + compute_bounds_for_param (scop, i, bound_one, bound_two); + save_clast_name_index (index_table, parameters[i], i, i, + bound_one, bound_two); + } + + mpz_clear (bound_one); + mpz_clear (bound_two); } /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for @@ -1334,15 +1619,16 @@ create_params_index (htab_t index_table, CloogProgram *prog) { bool gloog (scop_p scop, htab_t bb_pbb_mapping) { - edge new_scop_exit_edge = NULL; VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10); loop_p context_loop; sese region = SCOP_REGION (scop); ifsese if_region = NULL; - htab_t rename_map, newivs_index, params_index; + htab_t newivs_index, params_index; cloog_prog_clast pc; + struct ivs_params ip; timevar_push (TV_GRAPHITE_CODE_GEN); + gloog_error = false; pc = scop_to_clast (scop); @@ -1365,32 +1651,33 @@ gloog (scop_p scop, htab_t bb_pbb_mapping) graphite_verify (); context_loop = SESE_ENTRY (region)->src->loop_father; - compute_cloog_iv_types (pc.stmt); - rename_map = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free); newivs_index = htab_create (10, clast_name_index_elt_info, - eq_clast_name_indexes, free); + eq_clast_name_indexes, free_clast_name_index); params_index = htab_create (10, clast_name_index_elt_info, - eq_clast_name_indexes, free); + eq_clast_name_indexes, free_clast_name_index); + + create_params_index (scop, params_index, pc.prog); - create_params_index (params_index, pc.prog); + ip.newivs = &newivs; + ip.newivs_index = newivs_index; + ip.params = SESE_PARAMS (region); + ip.params_index = params_index; + ip.region = region; - new_scop_exit_edge = translate_clast (region, context_loop, pc.stmt, - if_region->true_region->entry, - rename_map, &newivs, newivs_index, - bb_pbb_mapping, 1, params_index); + translate_clast (context_loop, pc.stmt, if_region->true_region->entry, + bb_pbb_mapping, 0, &ip); graphite_verify (); - sese_adjust_liveout_phis (region, rename_map, - if_region->region->exit->src, - if_region->false_region->exit, - if_region->true_region->exit); + scev_reset (); recompute_all_dominators (); graphite_verify (); + if (gloog_error) + set_ifsese_condition (if_region, integer_zero_node); + free (if_region->true_region); free (if_region->region); free (if_region); - htab_delete (rename_map); htab_delete (newivs_index); htab_delete (params_index); VEC_free (tree, heap, newivs); @@ -1412,7 +1699,6 @@ gloog (scop_p scop, htab_t bb_pbb_mapping) num_no_dependency); } - return true; + return !gloog_error; } - #endif