X-Git-Url: http://git.sourceforge.jp/view?a=blobdiff_plain;f=gcc%2Fconvert.c;h=a833418d273a377d8c61711bd8df09ce16631333;hb=dfdfba40c33e30656bb1e396990524750c505366;hp=e03d39b7f32071f1220e0e80b16802c8cff7b17e;hpb=12874aaf60febc8e58d63b525a63aca96861e083;p=pf3gnuchains%2Fgcc-fork.git diff --git a/gcc/convert.c b/gcc/convert.c index e03d39b7f32..a833418d273 100644 --- a/gcc/convert.c +++ b/gcc/convert.c @@ -1,65 +1,79 @@ -/* Utility routines for data type conversion for GNU C. - Copyright (C) 1987, 88, 91-95, 97, 1998 Free Software Foundation, Inc. +/* Utility routines for data type conversion for GCC. + Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998, + 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 + Free Software Foundation, Inc. -This file is part of GNU C. +This file is part of GCC. -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 59 Temple Place - Suite 330, -Boston, MA 02111-1307, USA. */ +along with GCC; see the file COPYING3. If not see +. */ /* These routines are somewhat language-independent utility function intended to be called by the language-specific convert () functions. */ #include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" #include "tree.h" #include "flags.h" #include "convert.h" #include "toplev.h" +#include "langhooks.h" +#include "real.h" +#include "fixed-value.h" /* Convert EXPR to some pointer or reference type TYPE. - EXPR must be pointer, reference, integer, enumeral, or literal zero; in other cases error is called. */ tree -convert_to_pointer (type, expr) - tree type, expr; +convert_to_pointer (tree type, tree expr) { + location_t loc = EXPR_LOCATION (expr); + if (TREE_TYPE (expr) == type) + return expr; + + /* Propagate overflow to the NULL pointer. */ if (integer_zerop (expr)) - { - expr = build_int_2 (0, 0); - TREE_TYPE (expr) = type; - return expr; - } + return force_fit_type_double (type, 0, 0, 0, TREE_OVERFLOW (expr)); switch (TREE_CODE (TREE_TYPE (expr))) { case POINTER_TYPE: case REFERENCE_TYPE: - return build1 (NOP_EXPR, type, expr); + return fold_build1_loc (loc, NOP_EXPR, type, expr); case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case CHAR_TYPE: - if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE) - return build1 (CONVERT_EXPR, type, expr); + { + /* If the input precision differs from the target pointer type + precision, first convert the input expression to an integer type of + the target precision. Some targets, e.g. VMS, need several pointer + sizes to coexist so the latter isn't necessarily POINTER_SIZE. */ + unsigned int pprec = TYPE_PRECISION (type); + unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr)); + + if (eprec != pprec) + expr = fold_build1_loc (loc, NOP_EXPR, + lang_hooks.types.type_for_size (pprec, 0), + expr); + } - return - convert_to_pointer (type, - convert (type_for_size (POINTER_SIZE, 0), expr)); + return fold_build1_loc (loc, CONVERT_EXPR, type, expr); default: error ("cannot convert to a pointer type"); @@ -67,31 +81,299 @@ convert_to_pointer (type, expr) } } +/* Avoid any floating point extensions from EXP. */ +tree +strip_float_extensions (tree exp) +{ + tree sub, expt, subt; + + /* For floating point constant look up the narrowest type that can hold + it properly and handle it like (type)(narrowest_type)constant. + This way we can optimize for instance a=a*2.0 where "a" is float + but 2.0 is double constant. */ + if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp))) + { + REAL_VALUE_TYPE orig; + tree type = NULL; + + orig = TREE_REAL_CST (exp); + if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node) + && exact_real_truncate (TYPE_MODE (float_type_node), &orig)) + type = float_type_node; + else if (TYPE_PRECISION (TREE_TYPE (exp)) + > TYPE_PRECISION (double_type_node) + && exact_real_truncate (TYPE_MODE (double_type_node), &orig)) + type = double_type_node; + if (type) + return build_real (type, real_value_truncate (TYPE_MODE (type), orig)); + } + + if (!CONVERT_EXPR_P (exp)) + return exp; + + sub = TREE_OPERAND (exp, 0); + subt = TREE_TYPE (sub); + expt = TREE_TYPE (exp); + + if (!FLOAT_TYPE_P (subt)) + return exp; + + if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt)) + return exp; + + if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt)) + return exp; + + return strip_float_extensions (sub); +} + + /* Convert EXPR to some floating-point type TYPE. - EXPR must be float, integer, or enumeral; + EXPR must be float, fixed-point, integer, or enumeral; in other cases error is called. */ tree -convert_to_real (type, expr) - tree type, expr; +convert_to_real (tree type, tree expr) { + enum built_in_function fcode = builtin_mathfn_code (expr); + tree itype = TREE_TYPE (expr); + + /* Disable until we figure out how to decide whether the functions are + present in runtime. */ + /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */ + if (optimize + && (TYPE_MODE (type) == TYPE_MODE (double_type_node) + || TYPE_MODE (type) == TYPE_MODE (float_type_node))) + { + switch (fcode) + { +#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L: + CASE_MATHFN (COSH) + CASE_MATHFN (EXP) + CASE_MATHFN (EXP10) + CASE_MATHFN (EXP2) + CASE_MATHFN (EXPM1) + CASE_MATHFN (GAMMA) + CASE_MATHFN (J0) + CASE_MATHFN (J1) + CASE_MATHFN (LGAMMA) + CASE_MATHFN (POW10) + CASE_MATHFN (SINH) + CASE_MATHFN (TGAMMA) + CASE_MATHFN (Y0) + CASE_MATHFN (Y1) + /* The above functions may set errno differently with float + input or output so this transformation is not safe with + -fmath-errno. */ + if (flag_errno_math) + break; + CASE_MATHFN (ACOS) + CASE_MATHFN (ACOSH) + CASE_MATHFN (ASIN) + CASE_MATHFN (ASINH) + CASE_MATHFN (ATAN) + CASE_MATHFN (ATANH) + CASE_MATHFN (CBRT) + CASE_MATHFN (COS) + CASE_MATHFN (ERF) + CASE_MATHFN (ERFC) + CASE_MATHFN (FABS) + CASE_MATHFN (LOG) + CASE_MATHFN (LOG10) + CASE_MATHFN (LOG2) + CASE_MATHFN (LOG1P) + CASE_MATHFN (LOGB) + CASE_MATHFN (SIN) + CASE_MATHFN (SQRT) + CASE_MATHFN (TAN) + CASE_MATHFN (TANH) +#undef CASE_MATHFN + { + tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0)); + tree newtype = type; + + /* We have (outertype)sqrt((innertype)x). Choose the wider mode from + the both as the safe type for operation. */ + if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type)) + newtype = TREE_TYPE (arg0); + + /* Be careful about integer to fp conversions. + These may overflow still. */ + if (FLOAT_TYPE_P (TREE_TYPE (arg0)) + && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) + && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node) + || TYPE_MODE (newtype) == TYPE_MODE (float_type_node))) + { + tree fn = mathfn_built_in (newtype, fcode); + + if (fn) + { + tree arg = fold (convert_to_real (newtype, arg0)); + expr = build_call_expr (fn, 1, arg); + if (newtype == type) + return expr; + } + } + } + default: + break; + } + } + if (optimize + && (((fcode == BUILT_IN_FLOORL + || fcode == BUILT_IN_CEILL + || fcode == BUILT_IN_ROUNDL + || fcode == BUILT_IN_RINTL + || fcode == BUILT_IN_TRUNCL + || fcode == BUILT_IN_NEARBYINTL) + && (TYPE_MODE (type) == TYPE_MODE (double_type_node) + || TYPE_MODE (type) == TYPE_MODE (float_type_node))) + || ((fcode == BUILT_IN_FLOOR + || fcode == BUILT_IN_CEIL + || fcode == BUILT_IN_ROUND + || fcode == BUILT_IN_RINT + || fcode == BUILT_IN_TRUNC + || fcode == BUILT_IN_NEARBYINT) + && (TYPE_MODE (type) == TYPE_MODE (float_type_node))))) + { + tree fn = mathfn_built_in (type, fcode); + + if (fn) + { + tree arg = strip_float_extensions (CALL_EXPR_ARG (expr, 0)); + + /* Make sure (type)arg0 is an extension, otherwise we could end up + changing (float)floor(double d) into floorf((float)d), which is + incorrect because (float)d uses round-to-nearest and can round + up to the next integer. */ + if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg))) + return build_call_expr (fn, 1, fold (convert_to_real (type, arg))); + } + } + + /* Propagate the cast into the operation. */ + if (itype != type && FLOAT_TYPE_P (type)) + switch (TREE_CODE (expr)) + { + /* Convert (float)-x into -(float)x. This is safe for + round-to-nearest rounding mode. */ + case ABS_EXPR: + case NEGATE_EXPR: + if (!flag_rounding_math + && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr))) + return build1 (TREE_CODE (expr), type, + fold (convert_to_real (type, + TREE_OPERAND (expr, 0)))); + break; + /* Convert (outertype)((innertype0)a+(innertype1)b) + into ((newtype)a+(newtype)b) where newtype + is the widest mode from all of these. */ + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case RDIV_EXPR: + { + tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0)); + tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1)); + + if (FLOAT_TYPE_P (TREE_TYPE (arg0)) + && FLOAT_TYPE_P (TREE_TYPE (arg1)) + && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type)) + { + tree newtype = type; + + if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode + || TYPE_MODE (TREE_TYPE (arg1)) == SDmode + || TYPE_MODE (type) == SDmode) + newtype = dfloat32_type_node; + if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode + || TYPE_MODE (TREE_TYPE (arg1)) == DDmode + || TYPE_MODE (type) == DDmode) + newtype = dfloat64_type_node; + if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode + || TYPE_MODE (TREE_TYPE (arg1)) == TDmode + || TYPE_MODE (type) == TDmode) + newtype = dfloat128_type_node; + if (newtype == dfloat32_type_node + || newtype == dfloat64_type_node + || newtype == dfloat128_type_node) + { + expr = build2 (TREE_CODE (expr), newtype, + fold (convert_to_real (newtype, arg0)), + fold (convert_to_real (newtype, arg1))); + if (newtype == type) + return expr; + break; + } + + if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype)) + newtype = TREE_TYPE (arg0); + if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype)) + newtype = TREE_TYPE (arg1); + /* Sometimes this transformation is safe (cannot + change results through affecting double rounding + cases) and sometimes it is not. If NEWTYPE is + wider than TYPE, e.g. (float)((long double)double + + (long double)double) converted to + (float)(double + double), the transformation is + unsafe regardless of the details of the types + involved; double rounding can arise if the result + of NEWTYPE arithmetic is a NEWTYPE value half way + between two representable TYPE values but the + exact value is sufficiently different (in the + right direction) for this difference to be + visible in ITYPE arithmetic. If NEWTYPE is the + same as TYPE, however, the transformation may be + safe depending on the types involved: it is safe + if the ITYPE has strictly more than twice as many + mantissa bits as TYPE, can represent infinities + and NaNs if the TYPE can, and has sufficient + exponent range for the product or ratio of two + values representable in the TYPE to be within the + range of normal values of ITYPE. */ + if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) + && (flag_unsafe_math_optimizations + || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type) + && real_can_shorten_arithmetic (TYPE_MODE (itype), + TYPE_MODE (type)) + && !excess_precision_type (newtype)))) + { + expr = build2 (TREE_CODE (expr), newtype, + fold (convert_to_real (newtype, arg0)), + fold (convert_to_real (newtype, arg1))); + if (newtype == type) + return expr; + } + } + } + break; + default: + break; + } + switch (TREE_CODE (TREE_TYPE (expr))) { case REAL_TYPE: - return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR, - type, expr); + /* Ignore the conversion if we don't need to store intermediate + results and neither type is a decimal float. */ + return build1 ((flag_float_store + || DECIMAL_FLOAT_TYPE_P (type) + || DECIMAL_FLOAT_TYPE_P (itype)) + ? CONVERT_EXPR : NOP_EXPR, type, expr); case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case CHAR_TYPE: return build1 (FLOAT_EXPR, type, expr); + case FIXED_POINT_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + case COMPLEX_TYPE: return convert (type, - fold (build1 (REALPART_EXPR, - TREE_TYPE (TREE_TYPE (expr)), expr))); + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); case POINTER_TYPE: case REFERENCE_TYPE: @@ -106,61 +388,168 @@ convert_to_real (type, expr) /* Convert EXPR to some integer (or enum) type TYPE. - EXPR must be pointer, integer, discrete (enum, char, or bool), or float; - in other cases error is called. + EXPR must be pointer, integer, discrete (enum, char, or bool), float, + fixed-point or vector; in other cases error is called. The result of this is always supposed to be a newly created tree node not in use in any existing structure. */ tree -convert_to_integer (type, expr) - tree type, expr; +convert_to_integer (tree type, tree expr) { enum tree_code ex_form = TREE_CODE (expr); tree intype = TREE_TYPE (expr); - int inprec = TYPE_PRECISION (intype); - int outprec = TYPE_PRECISION (type); + unsigned int inprec = TYPE_PRECISION (intype); + unsigned int outprec = TYPE_PRECISION (type); + + /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can + be. Consider `enum E = { a, b = (enum E) 3 };'. */ + if (!COMPLETE_TYPE_P (type)) + { + error ("conversion to incomplete type"); + return error_mark_node; + } + + /* Convert e.g. (long)round(d) -> lround(d). */ + /* If we're converting to char, we may encounter differing behavior + between converting from double->char vs double->long->char. + We're in "undefined" territory but we prefer to be conservative, + so only proceed in "unsafe" math mode. */ + if (optimize + && (flag_unsafe_math_optimizations + || (long_integer_type_node + && outprec >= TYPE_PRECISION (long_integer_type_node)))) + { + tree s_expr = strip_float_extensions (expr); + tree s_intype = TREE_TYPE (s_expr); + const enum built_in_function fcode = builtin_mathfn_code (s_expr); + tree fn = 0; + + switch (fcode) + { + CASE_FLT_FN (BUILT_IN_CEIL): + /* Only convert in ISO C99 mode. */ + if (!TARGET_C99_FUNCTIONS) + break; + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL); + break; + + CASE_FLT_FN (BUILT_IN_FLOOR): + /* Only convert in ISO C99 mode. */ + if (!TARGET_C99_FUNCTIONS) + break; + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR); + break; + + CASE_FLT_FN (BUILT_IN_ROUND): + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LROUND); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND); + break; + + CASE_FLT_FN (BUILT_IN_NEARBYINT): + /* Only convert nearbyint* if we can ignore math exceptions. */ + if (flag_trapping_math) + break; + /* ... Fall through ... */ + CASE_FLT_FN (BUILT_IN_RINT): + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LRINT); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT); + break; + + CASE_FLT_FN (BUILT_IN_TRUNC): + return convert_to_integer (type, CALL_EXPR_ARG (s_expr, 0)); + + default: + break; + } + + if (fn) + { + tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0)); + return convert_to_integer (type, newexpr); + } + } + + /* Convert (int)logb(d) -> ilogb(d). */ + if (optimize + && flag_unsafe_math_optimizations + && !flag_trapping_math && !flag_errno_math && flag_finite_math_only + && integer_type_node + && (outprec > TYPE_PRECISION (integer_type_node) + || (outprec == TYPE_PRECISION (integer_type_node) + && !TYPE_UNSIGNED (type)))) + { + tree s_expr = strip_float_extensions (expr); + tree s_intype = TREE_TYPE (s_expr); + const enum built_in_function fcode = builtin_mathfn_code (s_expr); + tree fn = 0; + + switch (fcode) + { + CASE_FLT_FN (BUILT_IN_LOGB): + fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB); + break; + + default: + break; + } + + if (fn) + { + tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0)); + return convert_to_integer (type, newexpr); + } + } switch (TREE_CODE (intype)) { case POINTER_TYPE: case REFERENCE_TYPE: if (integer_zerop (expr)) - expr = integer_zero_node; - else - expr = fold (build1 (CONVERT_EXPR, - type_for_size (POINTER_SIZE, 0), expr)); - - return convert_to_integer (type, expr); + return build_int_cst (type, 0); + + /* Convert to an unsigned integer of the correct width first, and from + there widen/truncate to the required type. Some targets support the + coexistence of multiple valid pointer sizes, so fetch the one we need + from the type. */ + expr = fold_build1 (CONVERT_EXPR, + lang_hooks.types.type_for_size + (TYPE_PRECISION (intype), 0), + expr); + return fold_convert (type, expr); case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case CHAR_TYPE: + case OFFSET_TYPE: /* If this is a logical operation, which just returns 0 or 1, we can - change the type of the expression. For some logical operations, - we must also change the types of the operands to maintain type - correctness. */ + change the type of the expression. */ - if (TREE_CODE_CLASS (ex_form) == '<') + if (TREE_CODE_CLASS (ex_form) == tcc_comparison) { - TREE_TYPE (expr) = type; - return expr; - } - - else if (ex_form == TRUTH_AND_EXPR || ex_form == TRUTH_ANDIF_EXPR - || ex_form == TRUTH_OR_EXPR || ex_form == TRUTH_ORIF_EXPR - || ex_form == TRUTH_XOR_EXPR) - { - TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0)); - TREE_OPERAND (expr, 1) = convert (type, TREE_OPERAND (expr, 1)); - TREE_TYPE (expr) = type; - return expr; - } - - else if (ex_form == TRUTH_NOT_EXPR) - { - TREE_OPERAND (expr, 0) = convert (type, TREE_OPERAND (expr, 0)); + expr = copy_node (expr); TREE_TYPE (expr) = type; return expr; } @@ -170,7 +559,34 @@ convert_to_integer (type, expr) we are truncating EXPR. */ else if (outprec >= inprec) - return build1 (NOP_EXPR, type, expr); + { + enum tree_code code; + tree tem; + + /* If the precision of the EXPR's type is K bits and the + destination mode has more bits, and the sign is changing, + it is not safe to use a NOP_EXPR. For example, suppose + that EXPR's type is a 3-bit unsigned integer type, the + TYPE is a 3-bit signed integer type, and the machine mode + for the types is 8-bit QImode. In that case, the + conversion necessitates an explicit sign-extension. In + the signed-to-unsigned case the high-order bits have to + be cleared. */ + if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr)) + && (TYPE_PRECISION (TREE_TYPE (expr)) + != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))))) + code = CONVERT_EXPR; + else + code = NOP_EXPR; + + tem = fold_unary (code, type, expr); + if (tem) + return tem; + + tem = build1 (code, type, expr); + TREE_NO_WARNING (tem) = 1; + return tem; + } /* If TYPE is an enumeral type or a type with a precision less than the number of bits in its mode, do the conversion to the @@ -179,8 +595,8 @@ convert_to_integer (type, expr) else if (TREE_CODE (type) == ENUMERAL_TYPE || outprec != GET_MODE_BITSIZE (TYPE_MODE (type))) return build1 (NOP_EXPR, type, - convert (type_for_mode (TYPE_MODE (type), - TREE_UNSIGNED (type)), + convert (lang_hooks.types.type_for_mode + (TYPE_MODE (type), TYPE_UNSIGNED (type)), expr)); /* Here detect when we can distribute the truncation down past some @@ -209,17 +625,17 @@ convert_to_integer (type, expr) /* We can pass truncation down through right shifting when the shift count is a nonpositive constant. */ if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST - && tree_int_cst_lt (TREE_OPERAND (expr, 1), - convert (TREE_TYPE (TREE_OPERAND (expr, 1)), - integer_one_node))) + && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0) goto trunc1; break; case LSHIFT_EXPR: /* We can pass truncation down through left shifting - when the shift count is a nonnegative constant. */ + when the shift count is a nonnegative constant and + the target type is unsigned. */ if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0 + && TYPE_UNSIGNED (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) { /* If shift count is less than the width of the truncated type, @@ -235,12 +651,12 @@ convert_to_integer (type, expr) but (int) a << 32 is undefined and would get a warning. */ - tree t = convert_to_integer (type, integer_zero_node); + tree t = build_int_cst (type, 0); /* If the original expression had side-effects, we must preserve it. */ if (TREE_SIDE_EFFECTS (expr)) - return build (COMPOUND_EXPR, type, expr, t); + return build2 (COMPOUND_EXPR, type, expr, t); else return t; } @@ -261,8 +677,8 @@ convert_to_integer (type, expr) && outprec >= TYPE_PRECISION (TREE_TYPE (arg1)) /* If signedness of arg0 and arg1 don't match, we can't necessarily find a type to compare them in. */ - && (TREE_UNSIGNED (TREE_TYPE (arg0)) - == TREE_UNSIGNED (TREE_TYPE (arg1)))) + && (TYPE_UNSIGNED (TREE_TYPE (arg0)) + == TYPE_UNSIGNED (TREE_TYPE (arg1)))) goto trunc1; break; } @@ -272,7 +688,6 @@ convert_to_integer (type, expr) case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: - case BIT_ANDTC_EXPR: trunc1: { tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type); @@ -285,13 +700,13 @@ convert_to_integer (type, expr) { /* Do the arithmetic in type TYPEX, then convert result to TYPE. */ - register tree typex = type; + tree typex = type; /* Can't do arithmetic in enumeral types so use an integer type that will hold the values. */ if (TREE_CODE (typex) == ENUMERAL_TYPE) - typex = type_for_size (TYPE_PRECISION (typex), - TREE_UNSIGNED (typex)); + typex = lang_hooks.types.type_for_size + (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex)); /* But now perhaps TYPEX is as wide as INPREC. In that case, do nothing special here. @@ -300,19 +715,39 @@ convert_to_integer (type, expr) { /* Don't do unsigned arithmetic where signed was wanted, or vice versa. - Exception: if either of the original operands were - unsigned then can safely do the work as unsigned. + Exception: if both of the original operands were + unsigned then we can safely do the work as unsigned. + Exception: shift operations take their type solely + from the first argument. + Exception: the LSHIFT_EXPR case above requires that + we perform this operation unsigned lest we produce + signed-overflow undefinedness. And we may need to do it as unsigned if we truncate to the original size. */ - typex = ((TREE_UNSIGNED (TREE_TYPE (expr)) - || TREE_UNSIGNED (TREE_TYPE (arg0)) - || TREE_UNSIGNED (TREE_TYPE (arg1))) - ? unsigned_type (typex) : signed_type (typex)); + if (TYPE_UNSIGNED (TREE_TYPE (expr)) + || (TYPE_UNSIGNED (TREE_TYPE (arg0)) + && (TYPE_UNSIGNED (TREE_TYPE (arg1)) + || ex_form == LSHIFT_EXPR + || ex_form == RSHIFT_EXPR + || ex_form == LROTATE_EXPR + || ex_form == RROTATE_EXPR)) + || ex_form == LSHIFT_EXPR + /* If we have !flag_wrapv, and either ARG0 or + ARG1 is of a signed type, we have to do + PLUS_EXPR or MINUS_EXPR in an unsigned + type. Otherwise, we would introduce + signed-overflow undefinedness. */ + || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)) + || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))) + && (ex_form == PLUS_EXPR + || ex_form == MINUS_EXPR))) + typex = unsigned_type_for (typex); + else + typex = signed_type_for (typex); return convert (type, - fold (build (ex_form, typex, + fold_build2 (ex_form, typex, convert (typex, arg0), - convert (typex, arg1), - 0))); + convert (typex, arg1))); } } } @@ -323,55 +758,68 @@ convert_to_integer (type, expr) /* This is not correct for ABS_EXPR, since we must test the sign before truncation. */ { - register tree typex = type; - - /* Can't do arithmetic in enumeral types - so use an integer type that will hold the values. */ - if (TREE_CODE (typex) == ENUMERAL_TYPE) - typex = type_for_size (TYPE_PRECISION (typex), - TREE_UNSIGNED (typex)); - - /* But now perhaps TYPEX is as wide as INPREC. - In that case, do nothing special here. - (Otherwise would recurse infinitely in convert. */ - if (TYPE_PRECISION (typex) != inprec) - { - /* Don't do unsigned arithmetic where signed was wanted, - or vice versa. */ - typex = (TREE_UNSIGNED (TREE_TYPE (expr)) - ? unsigned_type (typex) : signed_type (typex)); - return convert (type, - fold (build1 (ex_form, typex, - convert (typex, - TREE_OPERAND (expr, 0))))); - } + tree typex; + + /* Don't do unsigned arithmetic where signed was wanted, + or vice versa. */ + if (TYPE_UNSIGNED (TREE_TYPE (expr))) + typex = unsigned_type_for (type); + else + typex = signed_type_for (type); + return convert (type, + fold_build1 (ex_form, typex, + convert (typex, + TREE_OPERAND (expr, 0)))); } case NOP_EXPR: + /* Don't introduce a + "can't convert between vector values of different size" error. */ + if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE + && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0)))) + != GET_MODE_SIZE (TYPE_MODE (type)))) + break; /* If truncating after truncating, might as well do all at once. If truncating after extending, we may get rid of wasted work. */ return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type)); case COND_EXPR: /* It is sometimes worthwhile to push the narrowing down through - the conditional and never loses. */ - return fold (build (COND_EXPR, type, TREE_OPERAND (expr, 0), - convert (type, TREE_OPERAND (expr, 1)), - convert (type, TREE_OPERAND (expr, 2)))); + the conditional and never loses. A COND_EXPR may have a throw + as one operand, which then has void type. Just leave void + operands as they are. */ + return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0), + VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))) + ? TREE_OPERAND (expr, 1) + : convert (type, TREE_OPERAND (expr, 1)), + VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2))) + ? TREE_OPERAND (expr, 2) + : convert (type, TREE_OPERAND (expr, 2))); default: break; } - return build1 (NOP_EXPR, type, expr); + return build1 (CONVERT_EXPR, type, expr); case REAL_TYPE: return build1 (FIX_TRUNC_EXPR, type, expr); + case FIXED_POINT_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + case COMPLEX_TYPE: return convert (type, - fold (build1 (REALPART_EXPR, - TREE_TYPE (TREE_TYPE (expr)), expr))); + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); + + case VECTOR_TYPE: + if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr)))) + { + error ("can't convert between vector values of different size"); + return error_mark_node; + } + return build1 (VIEW_CONVERT_EXPR, type, expr); default: error ("aggregate value used where an integer was expected"); @@ -382,20 +830,19 @@ convert_to_integer (type, expr) /* Convert EXPR to the complex type TYPE in the usual ways. */ tree -convert_to_complex (type, expr) - tree type, expr; +convert_to_complex (tree type, tree expr) { tree subtype = TREE_TYPE (type); - + switch (TREE_CODE (TREE_TYPE (expr))) { case REAL_TYPE: + case FIXED_POINT_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case CHAR_TYPE: - return build (COMPLEX_EXPR, type, convert (subtype, expr), - convert (subtype, integer_zero_node)); + return build2 (COMPLEX_EXPR, type, convert (subtype, expr), + convert (subtype, integer_zero_node)); case COMPLEX_TYPE: { @@ -404,23 +851,22 @@ convert_to_complex (type, expr) if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype)) return expr; else if (TREE_CODE (expr) == COMPLEX_EXPR) - return fold (build (COMPLEX_EXPR, - type, + return fold_build2 (COMPLEX_EXPR, type, convert (subtype, TREE_OPERAND (expr, 0)), - convert (subtype, TREE_OPERAND (expr, 1)))); + convert (subtype, TREE_OPERAND (expr, 1))); else { expr = save_expr (expr); return - fold (build (COMPLEX_EXPR, - type, convert (subtype, - fold (build1 (REALPART_EXPR, - TREE_TYPE (TREE_TYPE (expr)), - expr))), + fold_build2 (COMPLEX_EXPR, type, convert (subtype, - fold (build1 (IMAGPART_EXPR, - TREE_TYPE (TREE_TYPE (expr)), - expr))))); + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), + expr)), + convert (subtype, + fold_build1 (IMAGPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), + expr))); } } @@ -434,3 +880,64 @@ convert_to_complex (type, expr) return convert_to_complex (type, integer_zero_node); } } + +/* Convert EXPR to the vector type TYPE in the usual ways. */ + +tree +convert_to_vector (tree type, tree expr) +{ + switch (TREE_CODE (TREE_TYPE (expr))) + { + case INTEGER_TYPE: + case VECTOR_TYPE: + if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr)))) + { + error ("can't convert between vector values of different size"); + return error_mark_node; + } + return build1 (VIEW_CONVERT_EXPR, type, expr); + + default: + error ("can't convert value to a vector"); + return error_mark_node; + } +} + +/* Convert EXPR to some fixed-point type TYPE. + + EXPR must be fixed-point, float, integer, or enumeral; + in other cases error is called. */ + +tree +convert_to_fixed (tree type, tree expr) +{ + if (integer_zerop (expr)) + { + tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type))); + return fixed_zero_node; + } + else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))) + { + tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type))); + return fixed_one_node; + } + + switch (TREE_CODE (TREE_TYPE (expr))) + { + case FIXED_POINT_TYPE: + case INTEGER_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + case REAL_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + + case COMPLEX_TYPE: + return convert (type, + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); + + default: + error ("aggregate value used where a fixed-point was expected"); + return error_mark_node; + } +}