// exec_helpers.go -- helper functions used with fork, exec, wait. // Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package syscall import "sync" // Lock synchronizing creation of new file descriptors with fork. // // We want the child in a fork/exec sequence to inherit only the // file descriptors we intend. To do that, we mark all file // descriptors close-on-exec and then, in the child, explicitly // unmark the ones we want the exec'ed program to keep. // Unix doesn't make this easy: there is, in general, no way to // allocate a new file descriptor close-on-exec. Instead you // have to allocate the descriptor and then mark it close-on-exec. // If a fork happens between those two events, the child's exec // will inherit an unwanted file descriptor. // // This lock solves that race: the create new fd/mark close-on-exec // operation is done holding ForkLock for reading, and the fork itself // is done holding ForkLock for writing. At least, that's the idea. // There are some complications. // // Some system calls that create new file descriptors can block // for arbitrarily long times: open on a hung NFS server or named // pipe, accept on a socket, and so on. We can't reasonably grab // the lock across those operations. // // It is worse to inherit some file descriptors than others. // If a non-malicious child accidentally inherits an open ordinary file, // that's not a big deal. On the other hand, if a long-lived child // accidentally inherits the write end of a pipe, then the reader // of that pipe will not see EOF until that child exits, potentially // causing the parent program to hang. This is a common problem // in threaded C programs that use popen. // // Luckily, the file descriptors that are most important not to // inherit are not the ones that can take an arbitrarily long time // to create: pipe returns instantly, and the net package uses // non-blocking I/O to accept on a listening socket. // The rules for which file descriptor-creating operations use the // ForkLock are as follows: // // 1) Pipe. Does not block. Use the ForkLock. // 2) Socket. Does not block. Use the ForkLock. // 3) Accept. If using non-blocking mode, use the ForkLock. // Otherwise, live with the race. // 4) Open. Can block. Use O_CLOEXEC if available (Linux). // Otherwise, live with the race. // 5) Dup. Does not block. Use the ForkLock. // On Linux, could use fcntl F_DUPFD_CLOEXEC // instead of the ForkLock, but only for dup(fd, -1). type WaitStatus int var ForkLock sync.RWMutex // Convert array of string to array // of NUL-terminated byte pointer. func StringArrayPtr(ss []string) []*byte { bb := make([]*byte, len(ss)+1); for i := 0; i < len(ss); i++ { bb[i] = StringBytePtr(ss[i]); } bb[len(ss)] = nil; return bb; } func CloseOnExec(fd int) { fcntl(fd, F_SETFD, FD_CLOEXEC); } func SetNonblock(fd int, nonblocking bool) (errno int) { flag, err := fcntl(fd, F_GETFL, 0); if err != 0 { return err; } if nonblocking { flag |= O_NONBLOCK; } else { flag &= ^O_NONBLOCK; } flag, err = fcntl(fd, F_SETFL, flag); return err; } // Wait status is 7 bits at bottom, either 0 (exited), // 0x7F (stopped), or a signal number that caused an exit. // The 0x80 bit is whether there was a core dump. // An extra number (exit code, signal causing a stop) // is in the high bits. At least that's the idea. // There are various irregularities. For example, the // "continued" status is 0xFFFF, distinguishing itself // from stopped via the core dump bit. const ( mask = 0x7F; core = 0x80; exited = 0x00; stopped = 0x7F; shift = 8; ) func (w WaitStatus) Exited() bool { return w&mask == exited; } func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited; } func (w WaitStatus) Stopped() bool { return w&0xFF == stopped; } func (w WaitStatus) Continued() bool { return w == 0xFFFF; } func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0; } func (w WaitStatus) ExitStatus() int { if !w.Exited() { return -1; } return int(w >> shift) & 0xFF; } func (w WaitStatus) Signal() int { if !w.Signaled() { return -1; } return int(w & mask); } func (w WaitStatus) StopSignal() int { if !w.Stopped() { return -1; } return int(w >> shift) & 0xFF; } func (w WaitStatus) TrapCause() int { if w.StopSignal() != SIGTRAP { return -1; } return int(w >> shift) >> 8; }