# Copyright (C) 1999, 2001, 2003, 2004, 2005, 2006, 2007 # Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # Please email any bugs, comments, and/or additions to this file to: # gcc-patches@gcc.gnu.org # This file defines procs for determining features supported by the target. # Try to compile some code and return the messages printed by the compiler, # and optionally the contents for assembly files. Either a string or # a list of two strings are returned, depending on WANT_OUTPUT. # # BASENAME is a basename to use for temporary files. # WANT_OUTPUT is a flag which is 0 to request returning just the # compiler messages, or 1 to return the messages and the contents # of the assembly file. TYPE should be "assembly" if WANT_OUTPUT # is set. # TYPE is the type of compilation to perform (see target_compile). # CONTENTS gives the contents of the input file. # The rest is optional: # OPTIONS: additional compiler options to use. proc get_compiler_messages {basename want_output type contents args} { global tool if { [llength $args] > 0 } { set options [list "additional_flags=[lindex $args 0]"] } else { set options "" } set src ${basename}[pid].c switch $type { assembly { set output ${basename}[pid].s } object { set output ${basename}[pid].o } } set f [open $src "w"] puts $f $contents close $f set lines [${tool}_target_compile $src $output $type "$options"] file delete $src if { $want_output } { if { $type != "assembly" } { error "WANT_OUTPUT can only be used with assembly output" } elseif { ![string match "" $lines] } { # An error occurred. set result [list $lines ""] } else { set text "" set chan [open "$output"] while {[gets $chan line] >= 0} { append text "$line\n" } close $chan set result [list $lines $text] } } else { set result $lines } remote_file build delete $output return $result } proc current_target_name { } { global target_info if [info exists target_info(target,name)] { set answer $target_info(target,name) } else { set answer "" } return $answer } # Implement an effective-target check for property PROP by invoking # the compiler and seeing if it prints any messages. Assume that the # property holds if the compiler doesn't print anything. The other # arguments are as for get_compiler_messages, starting with TYPE. proc check_no_compiler_messages {prop args} { global et_cache set target [current_target_name] if {![info exists et_cache($prop,target)] || $et_cache($prop,target) != $target} { verbose "check_no_compiler_messages $prop: compiling source for $target" 2 set et_cache($prop,target) $target set et_cache($prop,value) \ [string match "" [eval get_compiler_messages $prop 0 $args]] } set value $et_cache($prop,value) verbose "check_no_compiler_messages $prop: returning $value for $target" 2 return $value } # Similar to check_no_compiler_messages, but also verify that the regular # expression PATTERN matches the compiler's output. proc check_no_messages_and_pattern {prop pattern args} { global et_cache set target [current_target_name] if {![info exists et_cache($prop,target)] || $et_cache($prop,target) != $target} { verbose "check_no_messages_and_pattern $prop: compiling source for $target" 2 set et_cache($prop,target) $target set results [eval get_compiler_messages $prop 1 $args] set et_cache($prop,value) \ [expr [string match "" [lindex $results 0]] \ && [regexp $pattern [lindex $results 1]]] } set value $et_cache($prop,value) verbose "check_no_messages_and_pattern $prop: returning $value for $target" 2 return $value } ############################### # proc check_weak_available { } ############################### # weak symbols are only supported in some configs/object formats # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure proc check_weak_available { } { global target_triplet global target_cpu # All mips targets should support it if { [ string first "mips" $target_cpu ] >= 0 } { return 1 } # All solaris2 targets should support it if { [regexp ".*-solaris2.*" $target_triplet] } { return 1 } # DEC OSF/1/Digital UNIX/Tru64 UNIX supports it if { [regexp "alpha.*osf.*" $target_triplet] } { return 1 } # Windows targets Cygwin and MingW32 support it if { [regexp ".*mingw32|.*cygwin" $target_triplet] } { return 1 } # HP-UX 10.X doesn't support it if { [istarget "hppa*-*-hpux10*"] } { return 0 } # ELF and ECOFF support it. a.out does with gas/gld but may also with # other linkers, so we should try it set objformat [gcc_target_object_format] switch $objformat { elf { return 1 } ecoff { return 1 } a.out { return 1 } mach-o { return 1 } som { return 1 } unknown { return -1 } default { return 0 } } } ############################### # proc check_visibility_available { what_kind } ############################### # The visibility attribute is only support in some object formats # This proc returns 1 if it is supported, 0 if not. # The argument is the kind of visibility, default/protected/hidden/internal. proc check_visibility_available { what_kind } { global tool global target_triplet # On NetWare, support makes no sense. if { [istarget *-*-netware*] } { return 0 } if [string match "" $what_kind] { set what_kind "hidden" } return [check_no_compiler_messages visibility_available_$what_kind object " void f() __attribute__((visibility(\"$what_kind\"))); void f() {} "] } ############################### # proc check_alias_available { } ############################### # Determine if the target toolchain supports the alias attribute. # Returns 2 if the target supports aliases. Returns 1 if the target # only supports weak aliased. Returns 0 if the target does not # support aliases at all. Returns -1 if support for aliases could not # be determined. proc check_alias_available { } { global alias_available_saved global tool if [info exists alias_available_saved] { verbose "check_alias_available returning saved $alias_available_saved" 2 } else { set src alias[pid].c set obj alias[pid].o verbose "check_alias_available compiling testfile $src" 2 set f [open $src "w"] # Compile a small test program. The definition of "g" is # necessary to keep the Solaris assembler from complaining # about the program. puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n" puts $f "void g() {} void f() __attribute__((alias(\"g\")));" close $f set lines [${tool}_target_compile $src $obj object ""] file delete $src remote_file build delete $obj if [string match "" $lines] then { # No error messages, everything is OK. set alias_available_saved 2 } else { if [regexp "alias definitions not supported" $lines] { verbose "check_alias_available target does not support aliases" 2 set objformat [gcc_target_object_format] if { $objformat == "elf" } { verbose "check_alias_available but target uses ELF format, so it ought to" 2 set alias_available_saved -1 } else { set alias_available_saved 0 } } else { if [regexp "only weak aliases are supported" $lines] { verbose "check_alias_available target supports only weak aliases" 2 set alias_available_saved 1 } else { set alias_available_saved -1 } } } verbose "check_alias_available returning $alias_available_saved" 2 } return $alias_available_saved } # Returns true if --gc-sections is supported on the target. proc check_gc_sections_available { } { global gc_sections_available_saved global tool if {![info exists gc_sections_available_saved]} { # Some targets don't support gc-sections despite whatever's # advertised by ld's options. if { [istarget alpha*-*-*] || [istarget ia64-*-*] } { set gc_sections_available_saved 0 return 0 } # elf2flt uses -q (--emit-relocs), which is incompatible with # --gc-sections. if { [board_info target exists ldflags] && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } { set gc_sections_available_saved 0 return 0 } # VxWorks kernel modules are relocatable objects linked with -r, # while RTP executables are linked with -q (--emit-relocs). # Both of these options are incompatible with --gc-sections. if { [istarget *-*-vxworks*] } { set gc_sections_available_saved 0 return 0 } # Check if the ld used by gcc supports --gc-sections. set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""] regsub ".*\n\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0] set ld_output [remote_exec host "$gcc_ld" "--help"] if { [ string first "--gc-sections" $ld_output ] >= 0 } { set gc_sections_available_saved 1 } else { set gc_sections_available_saved 0 } } return $gc_sections_available_saved } # Return true if profiling is supported on the target. proc check_profiling_available { test_what } { global profiling_available_saved verbose "Profiling argument is <$test_what>" 1 # These conditions depend on the argument so examine them before # looking at the cache variable. # Support for -p on solaris2 relies on mcrt1.o which comes with the # vendor compiler. We cannot reliably predict the directory where the # vendor compiler (and thus mcrt1.o) is installed so we can't # necessarily find mcrt1.o even if we have it. if { [istarget *-*-solaris2*] && [lindex $test_what 1] == "-p" } { return 0 } # Support for -p on irix relies on libprof1.a which doesn't appear to # exist on any irix6 system currently posting testsuite results. # Support for -pg on irix relies on gcrt1.o which doesn't exist yet. # See: http://gcc.gnu.org/ml/gcc/2002-10/msg00169.html if { [istarget mips*-*-irix*] && ([lindex $test_what 1] == "-p" || [lindex $test_what 1] == "-pg") } { return 0 } # At present, there is no profiling support on NetWare. if { [istarget *-*-netware*] } { return 0 } # uClibc does not have gcrt1.o. if { [check_effective_target_uclibc] && ([lindex $test_what 1] == "-p" || [lindex $test_what 1] == "-pg") } { return 0 } # Now examine the cache variable. if {![info exists profiling_available_saved]} { # Some targets don't have any implementation of __bb_init_func or are # missing other needed machinery. if { [istarget mmix-*-*] || [istarget arm*-*-eabi*] || [istarget arm*-*-elf] || [istarget arm*-*-symbianelf*] || [istarget bfin-*-*] || [istarget powerpc-*-eabi*] || [istarget strongarm*-*-elf] || [istarget xscale*-*-elf] || [istarget cris-*-*] || [istarget h8300-*-*] || [istarget m32c-*-elf] || [istarget m68k-*-elf] || [istarget m68k-*-uclinux*] || [istarget mips*-*-elf] || [istarget xtensa-*-elf] || [istarget *-*-vxworks*] || [istarget *-*-windiss] } { set profiling_available_saved 0 } else { set profiling_available_saved 1 } } return $profiling_available_saved } # Return 1 if target has packed layout of structure members by # default, 0 otherwise. Note that this is slightly different than # whether the target has "natural alignment": both attributes may be # false. proc check_effective_target_default_packed { } { return [check_no_compiler_messages default_packed assembly { struct x { char a; long b; } c; int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1]; }] } # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See # documentation, where the test also comes from. proc check_effective_target_pcc_bitfield_type_matters { } { # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty # bitfields, but let's stick to the example code from the docs. return [check_no_compiler_messages pcc_bitfield_type_matters assembly { struct foo1 { char x; char :0; char y; }; struct foo2 { char x; int :0; char y; }; int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1]; }] } # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_tls {} { global et_tls_saved global tool if [info exists et_tls_saved] { verbose "check_effective_target_tls: using cached result" 2 } else { set et_tls_saved 1 set src tls[pid].c set asm tls[pid].S verbose "check_effective_target_tls: compiling testfile $src" 2 set f [open $src "w"] # Compile a small test program. puts $f "__thread int i;\n" close $f # Test for thread-local data supported by the platform. set comp_output [${tool}_target_compile $src $asm assembly ""] file delete $src if { [string match "*not supported*" $comp_output] } { set et_tls_saved 0 } else { set fd [open $asm r] set text [read $fd] close $fd if { [string match "*emutls*" $text]} { set et_tls_saved 0 } else { set et_tls_saved 1 } } remove-build-file $asm } verbose "check_effective_target_tls: returning $et_tls_saved" 2 return $et_tls_saved } # Return 1 if TLS executables can run correctly, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_tls_runtime {} { global et_tls_runtime_saved global tool if [info exists et_tls_runtime_saved] { verbose "check_effective_target_tls_runtime: using cached result" 2 } else { set et_tls_runtime_saved 0 set src tls_runtime[pid].c set exe tls_runtime[pid].x verbose "check_effective_target_tls_runtime: compiling testfile $src" 2 set f [open $src "w"] # Compile a small test program. puts $f "__thread int thr = 0;\n" puts $f "int main(void)\n {\n return thr;\n}" close $f set comp_output \ [${tool}_target_compile $src $exe executable ""] file delete $src if [string match "" $comp_output] then { # No error messages, everything is OK. set result [remote_load target "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_effective_target_tls_runtime status is <$status>" 2 if { $status == "pass" } { set et_tls_runtime_saved 1 } verbose "check_effective_target_tls_runtime: returning $et_tls_runtime_saved" 2 } } return $et_tls_runtime_saved } # Return 1 if compilation with -fopenmp is error-free for trivial # code, 0 otherwise. proc check_effective_target_fopenmp {} { return [check_no_compiler_messages fopenmp object { void foo (void) { } } "-fopenmp"] } # Return 1 if the target supports -fstack-protector proc check_effective_target_fstack_protector {} { global tool set result "" set src stack_prot[pid].c set exe stack_prot[pid].x verbose "check_effective_target_fstack_protector compiling testfile $src" 2 set f [open $src "w"] # Compile a small test program. puts $f "int main (void)\n { return 0; }\n" close $f set opts "additional_flags=-fstack-protector" set lines [${tool}_target_compile $src $exe executable "$opts" ] file delete $src if [string match "" $lines] then { # No error messages, everything is OK. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_iconv_available status is <$status>" 2 if { $status == "pass" } then { return 1 } } return 0 } # Return 1 if compilation with -freorder-blocks-and-partition is error-free # for trivial code, 0 otherwise. proc check_effective_target_freorder {} { return [check_no_compiler_messages freorder object { void foo (void) { } } "-freorder-blocks-and-partition"] } # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors # emitted, 0 otherwise. Whether a shared library can actually be built is # out of scope for this test. proc check_effective_target_fpic { } { # Note that M68K has a multilib that supports -fpic but not # -fPIC, so we need to check both. We test with a program that # requires GOT references. foreach arg {fpic fPIC} { if [check_no_compiler_messages $arg object { extern int foo (void); extern int bar; int baz (void) { return foo () + bar; } } "-$arg"] { return 1 } } return 0 } # Return true if the target supports -mpaired-single (as used on MIPS). proc check_effective_target_mpaired_single { } { return [check_no_compiler_messages mpaired_single object { void foo (void) { } } "-mpaired-single"] } # Return 1 if the current multilib does not generate PIC by default. proc check_effective_target_nonpic { } { return [check_no_compiler_messages nonpic assembly { #if __PIC__ #error FOO #endif }] } # Return 1 if the target does not use a status wrapper. proc check_effective_target_unwrapped { } { if { [target_info needs_status_wrapper] != "" \ && [target_info needs_status_wrapper] != "0" } { return 0 } return 1 } # Return true if iconv is supported on the target. In particular IBM1047. proc check_iconv_available { test_what } { global tool global libiconv set result "" set src iconv[pid].c set exe iconv[pid].x verbose "check_iconv_available compiling testfile $src" 2 set f [open $src "w"] # Compile a small test program. puts $f "#include \n" puts $f "int main (void)\n {\n iconv_t cd; \n" puts $f "cd = iconv_open (\"[lindex $test_what 1]\", \"UTF-8\");\n" puts $f "if (cd == (iconv_t) -1)\n return 1;\n" puts $f "return 0;\n}" close $f # If the tool configuration file has not set libiconv, try "-liconv" if { ![info exists libiconv] } { set libiconv "-liconv" } set lines [${tool}_target_compile $src $exe executable "libs=$libiconv" ] file delete $src if [string match "" $lines] then { # No error messages, everything is OK. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_iconv_available status is <$status>" 2 if { $status == "pass" } then { return 1 } } return 0 } # Return true if named sections are supported on this target. proc check_named_sections_available { } { return [check_no_compiler_messages named_sections assembly { int __attribute__ ((section("whatever"))) foo; }] } # Return 1 if the target supports Fortran real kinds larger than real(8), # 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_large_real { } { global et_fortran_large_real_saved global et_fortran_large_real_target_name global tool if { ![info exists et_fortran_large_real_target_name] } { set et_fortran_large_real_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_fortran_large_real_target_name } { verbose "check_effective_target_fortran_large_real: `$et_fortran_large_real_target_name' `$current_target'" 2 set et_fortran_large_real_target_name $current_target if [info exists et_fortran_large_real_saved] { verbose "check_effective_target_fortran_large_real: removing cached result" 2 unset et_fortran_large_real_saved } } if [info exists et_fortran_large_real_saved] { verbose "check_effective_target_fortran_large_real returning saved $et_fortran_large_real_saved" 2 } else { set et_fortran_large_real_saved 0 # Set up, compile, and execute a test program using large real # kinds. Include the current process ID in the file names to # prevent conflicts with invocations for multiple testsuites. set src real[pid].f90 set exe real[pid].x set f [open $src "w"] puts $f "integer,parameter :: k = &" puts $f " selected_real_kind (precision (0.0_8) + 1)" puts $f "real(kind=k) :: x" puts $f "x = cos (x);" puts $f "end" close $f verbose "check_effective_target_fortran_large_real compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable ""] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. remote_file build delete $exe set et_fortran_large_real_saved 1 } } return $et_fortran_large_real_saved } # Return 1 if the target supports Fortran integer kinds larger than # integer(8), 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_fortran_large_int { } { global et_fortran_large_int_saved global et_fortran_large_int_target_name global tool if { ![info exists et_fortran_large_int_target_name] } { set et_fortran_large_int_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_fortran_large_int_target_name } { verbose "check_effective_target_fortran_large_int: `$et_fortran_large_int_target_name' `$current_target'" 2 set et_fortran_large_int_target_name $current_target if [info exists et_fortran_large_int_saved] { verbose "check_effective_target_fortran_large_int: removing cached result" 2 unset et_fortran_large_int_saved } } if [info exists et_fortran_large_int_saved] { verbose "check_effective_target_fortran_large_int returning saved $et_fortran_large_int_saved" 2 } else { set et_fortran_large_int_saved 0 # Set up, compile, and execute a test program using large integer # kinds. Include the current process ID in the file names to # prevent conflicts with invocations for multiple testsuites. set src int[pid].f90 set exe int[pid].x set f [open $src "w"] puts $f "integer,parameter :: k = &" puts $f " selected_int_kind (range (0_8) + 1)" puts $f "integer(kind=k) :: i" puts $f "end" close $f verbose "check_effective_target_fortran_large_int compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable ""] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. remote_file build delete $exe set et_fortran_large_int_saved 1 } } return $et_fortran_large_int_saved } # Return 1 if we can statically link libgfortran, 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_static_libgfortran { } { global et_static_libgfortran global et_static_libgfortran_target_name global tool if { ![info exists et_static_libgfortran_target_name] } { set et_static_libgfortran_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_static_libgfortran_target_name } { verbose "check_effective_target_static_libgfortran: `$et_static_libgfortran_target_name' `$current_target'" 2 set et_static_libgfortran_target_name $current_target if [info exists et_static_libgfortran_saved] { verbose "check_effective_target_static_libgfortran: removing cached result" 2 unset et_static_libgfortran_saved } } if [info exists et_static_libgfortran_saved] { verbose "check_effective_target_static_libgfortran returning saved $et_static_libgfortran_saved" 2 } else { set et_static_libgfortran_saved 0 # Set up, compile, and execute a test program using static linking. # Include the current process ID in the file names to prevent # conflicts with invocations for multiple testsuites. set opts "additional_flags=-static" set src static[pid].f set exe static[pid].x set f [open $src "w"] puts $f " print *, 'test'" puts $f " end" close $f verbose "check_effective_target_static_libgfortran compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable "$opts"] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. remote_file build delete $exe set et_static_libgfortran_saved 1 } } return $et_static_libgfortran_saved } # Return 1 if the target supports executing AltiVec instructions, 0 # otherwise. Cache the result. proc check_vmx_hw_available { } { global vmx_hw_available_saved global tool if [info exists vmx_hw_available_saved] { verbose "check_hw_available returning saved $vmx_hw_available_saved" 2 } else { set vmx_hw_available_saved 0 # Some simulators are known to not support VMX instructions. if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } { verbose "check_hw_available returning 0" 2 return $vmx_hw_available_saved } # Set up, compile, and execute a test program containing VMX # instructions. Include the current process ID in the file # names to prevent conflicts with invocations for multiple # testsuites. set src vmx[pid].c set exe vmx[pid].x set f [open $src "w"] puts $f "int main() {" puts $f "#ifdef __MACH__" puts $f " asm volatile (\"vor v0,v0,v0\");" puts $f "#else" puts $f " asm volatile (\"vor 0,0,0\");" puts $f "#endif" puts $f " return 0; }" close $f # Most targets don't require special flags for this test case, but # Darwin does. if [istarget *-*-darwin*] { set opts "additional_flags=-maltivec" } else { set opts "" } verbose "check_vmx_hw_available compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable "$opts"] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_vmx_hw_available testfile status is <$status>" 2 if { $status == "pass" } then { set vmx_hw_available_saved 1 } } else { verbose "check_vmx_hw_availalble testfile compilation failed" 2 } } return $vmx_hw_available_saved } # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing # complex float arguments. This affects gfortran tests that call cabsf # in libm built by an earlier compiler. Return 1 if libm uses the same # argument passing as the compiler under test, 0 otherwise. # # When the target name changes, replace the cached result. proc check_effective_target_broken_cplxf_arg { } { global et_broken_cplxf_arg_saved global et_broken_cplxf_arg_target_name global tool # Skip the work for targets known not to be affected. if { ![istarget powerpc64-*-linux*] } { return 0 } elseif { [is-effective-target ilp32] } { return 0 } if { ![info exists et_broken_cplxf_arg_target_name] } { set et_broken_cplxf_arg_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_broken_cplxf_arg_target_name } { verbose "check_effective_target_broken_cplxf_arg: `$et_broken_cplxf_arg_target_name'" 2 set et_broken_cplxf_arg_target_name $current_target if [info exists et_broken_cplxf_arg_saved] { verbose "check_effective_target_broken_cplxf_arg: removing cached result" 2 unset et_broken_cplxf_arg_saved } } if [info exists et_broken_cplxf_arg_saved] { verbose "check_effective_target_broken_cplxf_arg: using cached result" 2 } else { set et_broken_cplxf_arg_saved 0 # This is only known to affect one target. if { ![istarget powerpc64-*-linux*] || ![is-effective-target lp64] } { set et_broken_cplxf_arg_saved 0 verbose "check_effective_target_broken_cplxf_arg: caching 0" 2 return $et_broken_cplxf_arg_saved } # Set up, compile, and execute a C test program that calls cabsf. set src cabsf[pid].c set exe cabsf[pid].x set f [open $src "w"] puts $f "#include " puts $f "extern void abort (void);" puts $f "float fabsf (float);" puts $f "float cabsf (_Complex float);" puts $f "int main ()" puts $f "{" puts $f " _Complex float cf;" puts $f " float f;" puts $f " cf = 3 + 4.0fi;" puts $f " f = cabsf (cf);" puts $f " if (fabsf (f - 5.0) > 0.0001) abort ();" puts $f " return 0;" puts $f "}" close $f set lines [${tool}_target_compile $src $exe executable "-lm"] file delete $src if [string match "" $lines] { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_effective_target_broken_cplxf_arg: status is <$status>" 2 if { $status != "pass" } { set et_broken_cplxf_arg_saved 1 } } else { verbose "check_effective_target_broken_cplxf_arg: compilation failed" 2 } } return $et_broken_cplxf_arg_saved } proc check_alpha_max_hw_available { } { global alpha_max_hw_available_saved global tool if [info exists alpha_max_hw_available_saved] { verbose "check_alpha_max_hw_available returning saved $alpha_max_hw_available_saved" 2 } else { set alpha_max_hw_available_saved 0 # Set up, compile, and execute a test program probing bit 8 of the # architecture mask, which indicates presence of MAX instructions. set src max[pid].c set exe max[pid].x set f [open $src "w"] puts $f "int main() { return __builtin_alpha_amask(1<<8) != 0; }" close $f verbose "check_alpha_max_hw_available compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable ""] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_alpha_max_hw_available testfile status is <$status>" 2 if { $status == "pass" } then { set alpha_max_hw_available_saved 1 } } else { verbose "check_alpha_max_hw_availalble testfile compilation failed" 2 } } return $alpha_max_hw_available_saved } # Returns true iff the FUNCTION is available on the target system. # (This is essentially a Tcl implementation of Autoconf's # AC_CHECK_FUNC.) proc check_function_available { function } { set var "${function}_available_saved" global $var global tool if {![info exists $var]} { # Assume it exists. set $var 1 # Check to make sure. set src "function[pid].c" set exe "function[pid].exe" set f [open $src "w"] puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n" puts $f "char $function ();\n" puts $f "int main () { $function (); }" close $f set lines [${tool}_target_compile $src $exe executable ""] file delete $src file delete $exe if {![string match "" $lines]} then { set $var 0 verbose -log "$function is not available" } else { verbose -log "$function is available" } } eval return \$$var } # Returns true iff "fork" is available on the target system. proc check_fork_available {} { return [check_function_available "fork"] } # Returns true iff "mkfifo" is available on the target system. proc check_mkfifo_available {} { if {[istarget *-*-cygwin*]} { # Cygwin has mkfifo, but support is incomplete. return 0 } return [check_function_available "mkfifo"] } # Returns true iff "__cxa_atexit" is used on the target system. proc check_cxa_atexit_available { } { global et_cxa_atexit global et_cxa_atexit_target_name global tool if { ![info exists et_cxa_atexit_target_name] } { set et_cxa_atexit_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_cxa_atexit_target_name } { verbose "check_cxa_atexit_available: `$et_cxa_atexit_target_name'" 2 set et_cxa_atexit_target_name $current_target if [info exists et_cxa_atexit] { verbose "check_cxa_atexit_available: removing cached result" 2 unset et_cxa_atexit } } if [info exists et_cxa_atexit] { verbose "check_cxa_atexit_available: using cached result" 2 } elseif { [istarget "hppa*-*-hpux10*"] } { # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes. set et_cxa_atexit 0 } else { set et_cxa_atexit 0 # Set up, compile, and execute a C++ test program that depends # on correct ordering of static object destructors. This is # indicative of the presence and use of __cxa_atexit. set src cxaatexit[pid].cc set exe cxaatexit[pid].x set f [open $src "w"] puts $f "#include " puts $f "static unsigned int count;" puts $f "struct X" puts $f "{" puts $f " X() { count = 1; }" puts $f " ~X()" puts $f " {" puts $f " if (count != 3)" puts $f " exit(1);" puts $f " count = 4;" puts $f " }" puts $f "};" puts $f "void f()" puts $f "{" puts $f " static X x;" puts $f "}" puts $f "struct Y" puts $f "{" puts $f " Y() { f(); count = 2; }" puts $f " ~Y()" puts $f " {" puts $f " if (count != 2)" puts $f " exit(1);" puts $f " count = 3;" puts $f " }" puts $f "};" puts $f "Y y;" puts $f "int main()" puts $f "{ return 0; }" close $f set lines [${tool}_target_compile $src $exe executable ""] file delete $src if [string match "" $lines] { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_cxa_atexit_available: status is <$status>" 2 if { $status == "pass" } { set et_cxa_atexit 1 } } else { verbose "check_cxa_atexit_available: compilation failed" 2 } } return $et_cxa_atexit } # Return 1 if we're generating 32-bit code using default options, 0 # otherwise. proc check_effective_target_ilp32 { } { return [check_no_compiler_messages ilp32 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 4 && sizeof (long) == 4 ? 1 : -1]; }] } # Return 1 if we're generating 32-bit or larger integers using default # options, 0 otherwise. proc check_effective_target_int32plus { } { return [check_no_compiler_messages int32plus object { int dummy[sizeof (int) >= 4 ? 1 : -1]; }] } # Return 1 if we're generating 32-bit or larger pointers using default # options, 0 otherwise. proc check_effective_target_ptr32plus { } { return [check_no_compiler_messages ptr32plus object { int dummy[sizeof (void *) >= 4 ? 1 : -1]; }] } # Return 1 if we support 32-bit or larger array and structure sizes # using default options, 0 otherwise. proc check_effective_target_size32plus { } { return [check_no_compiler_messages size32plus object { char dummy[65537]; }] } # Returns 1 if we're generating 16-bit or smaller integers with the # default options, 0 otherwise. proc check_effective_target_int16 { } { return [check_no_compiler_messages int16 object { int dummy[sizeof (int) < 4 ? 1 : -1]; }] } # Return 1 if we're generating 64-bit code using default options, 0 # otherwise. proc check_effective_target_lp64 { } { return [check_no_compiler_messages lp64 object { int dummy[sizeof (int) == 4 && sizeof (void *) == 8 && sizeof (long) == 8 ? 1 : -1]; }] } # Return 1 if the target supports long double larger than double, # 0 otherwise. proc check_effective_target_large_long_double { } { return [check_no_compiler_messages large_long_double object { int dummy[sizeof(long double) > sizeof(double) ? 1 : -1]; }] } # Return 1 if the target supports compiling decimal floating point, # 0 otherwise. proc check_effective_target_dfp_nocache { } { verbose "check_effective_target_dfp_nocache: compiling source" 2 set ret [string match "" [get_compiler_messages dfp 0 object { _Decimal32 x; _Decimal64 y; _Decimal128 z; }]] verbose "check_effective_target_dfp_nocache: returning $ret" 2 return $ret } proc check_effective_target_dfprt_nocache { } { global tool set ret 0 verbose "check_effective_target_dfprt_nocache: compiling source" 2 # Set up, compile, and execute a test program containing decimal # float operations. set src dfprt[pid].c set exe dfprt[pid].x set f [open $src "w"] puts $f "_Decimal32 x = 1.2df; _Decimal64 y = 2.3dd; _Decimal128 z;" puts $f "int main () { z = x + y; return 0; }" close $f verbose "check_effective_target_dfprt_nocache: compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable ""] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_effective_target_dfprt_nocache: testfile status is <$status>" 2 if { $status == "pass" } then { set ret 1 } } return $ret verbose "check_effective_target_dfprt_nocache: returning $ret" 2 } # Return 1 if the target supports compiling Decimal Floating Point, # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_dfp { } { global et_dfp_saved if [info exists et_dfp_saved] { verbose "check_effective_target_dfp: using cached result" 2 } else { set et_dfp_saved [check_effective_target_dfp_nocache] } verbose "check_effective_target_dfp: returning $et_dfp_saved" 2 return $et_dfp_saved } # Return 1 if the target supports linking and executing Decimal Floating # Point, # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_dfprt { } { global et_dfprt_saved global tool if [info exists et_dfprt_saved] { verbose "check_effective_target_dfprt: using cached result" 2 } else { set et_dfprt_saved [check_effective_target_dfprt_nocache] } verbose "check_effective_target_dfprt: returning $et_dfprt_saved" 2 return $et_dfprt_saved } # Return 1 if the target needs a command line argument to enable a SIMD # instruction set. proc check_effective_target_vect_cmdline_needed { } { global et_vect_cmdline_needed_saved global et_vect_cmdline_needed_target_name if { ![info exists et_vect_cmdline_needed_target_name] } { set et_vect_cmdline_needed_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_vect_cmdline_needed_target_name } { verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2 set et_vect_cmdline_needed_target_name $current_target if { [info exists et_vect_cmdline_needed_saved] } { verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2 unset et_vect_cmdline_needed_saved } } if [info exists et_vect_cmdline_needed_saved] { verbose "check_effective_target_vect_cmdline_needed: using cached result" 2 } else { set et_vect_cmdline_needed_saved 1 if { [istarget ia64-*-*] || (([istarget x86_64-*-*] || [istarget i?86-*-*]) && [check_effective_target_lp64]) || ([istarget powerpc*-*-*] && ([check_effective_target_powerpc_spe] || [check_effective_target_powerpc_altivec]))} { set et_vect_cmdline_needed_saved 0 } } verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2 return $et_vect_cmdline_needed_saved } # Return 1 if the target supports hardware vectors of int, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_int { } { global et_vect_int_saved if [info exists et_vect_int_saved] { verbose "check_effective_target_vect_int: using cached result" 2 } else { set et_vect_int_saved 0 if { [istarget i?86-*-*] || [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget x86_64-*-*] || [istarget sparc*-*-*] || [istarget alpha*-*-*] || [istarget ia64-*-*] } { set et_vect_int_saved 1 } } verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2 return $et_vect_int_saved } # Return 1 if the target supports int->float conversion # proc check_effective_target_vect_intfloat_cvt { } { global et_vect_intfloat_cvt_saved if [info exists et_vect_intfloat_cvt_saved] { verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2 } else { set et_vect_intfloat_cvt_saved 0 if { [istarget i?86-*-*] || [istarget powerpc*-*-*] || [istarget x86_64-*-*] } { set et_vect_intfloat_cvt_saved 1 } } verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2 return $et_vect_intfloat_cvt_saved } # Return 1 if the target supports float->int conversion # proc check_effective_target_vect_floatint_cvt { } { global et_vect_floatint_cvt_saved if [info exists et_vect_floatint_cvt_saved] { verbose "check_effective_target_vect_floatint_cvt: using cached result" 2 } else { set et_vect_floatint_cvt_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_floatint_cvt_saved 1 } } verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2 return $et_vect_floatint_cvt_saved } # Return 1 is this is an arm target using 32-bit instructions proc check_effective_target_arm32 { } { global et_arm32_saved global et_arm32_target_name global compiler_flags if { ![info exists et_arm32_target_name] } { set et_arm32_target_name "" } # If the target has changed since we set the cached value, clear it. set current_target [current_target_name] if { $current_target != $et_arm32_target_name } { verbose "check_effective_target_arm32: `$et_arm32_target_name' `$current_target'" 2 set et_arm32_target_name $current_target if { [info exists et_arm32_saved] } { verbose "check_effective_target_arm32: removing cached result" 2 unset et_arm32_saved } } if [info exists et_arm32_saved] { verbose "check-effective_target_arm32: using cached result" 2 } else { set et_arm32_saved 0 if { [istarget arm-*-*] || [istarget strongarm*-*-*] || [istarget xscale-*-*] } { if ![string match "*-mthumb *" $compiler_flags] { set et_arm32_saved 1 } } } verbose "check_effective_target_arm32: returning $et_arm32_saved" 2 return $et_arm32_saved } # Return 1 if this is an ARM target supporting -mfpu=vfp # -mfloat-abi=softfp. Some multilibs may be incompatible with these # options. proc check_effective_target_arm_vfp_ok { } { if { [check_effective_target_arm32] } { return [check_no_compiler_messages arm_vfp_ok object { int dummy; } "-mfpu=vfp -mfloat-abi=softfp"] } else { return 0 } } # Return 1 if this is a PowerPC target with floating-point registers. proc check_effective_target_powerpc_fprs { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { return [check_no_compiler_messages powerpc_fprs object { #ifdef __NO_FPRS__ #error no FPRs #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target supporting -maltivec. proc check_effective_target_powerpc_altivec_ok { } { if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } { # AltiVec is not supported on Aix. if { [istarget powerpc*-*-aix*] } { return 0 } return [check_no_compiler_messages powerpc_altivec_ok object { int dummy; } "-maltivec"] } else { return 0 } } # Return 1 if this is a PowerPC target with SPE enabled. proc check_effective_target_powerpc_spe { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_spe object { #ifndef __SPE__ #error not SPE #else int dummy; #endif }] } else { return 0 } } # Return 1 if this is a PowerPC target with Altivec enabled. proc check_effective_target_powerpc_altivec { } { if { [istarget powerpc*-*-*] } { return [check_no_compiler_messages powerpc_altivec object { #ifndef __ALTIVEC__ #error not Altivec #else int dummy; #endif }] } else { return 0 } } # The VxWorks SPARC simulator accepts only EM_SPARC executables and # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the # test environment appears to run executables on such a simulator. proc check_effective_target_ultrasparc_hw { } { global et_ultrasparc_hw_saved global tool if [info exists et_ultrasparc_hw_saved] { verbose "check_ultrasparc_hw_available returning saved $et_ultrasparc_hw_saved" 2 } else { set et_ultrasparc_hw_saved 0 # Set up, compile, and execute a simple test program. The # program will be compiled with -mcpu=ultrasparc to instruct the # assembler to produce EM_SPARC32PLUS executables. set src svect[pid].c set exe svect[pid].x set f [open $src "w"] puts $f "int main() { return 0; }" close $f verbose "check_ultrasparc_hw_available compiling testfile $src" 2 set lines [${tool}_target_compile $src $exe executable "additional_flags=-mcpu=ultrasparc"] file delete $src if [string match "" $lines] then { # No error message, compilation succeeded. set result [${tool}_load "./$exe" "" ""] set status [lindex $result 0] remote_file build delete $exe verbose "check_ultrasparc_hw_available testfile status is <$status>" 2 if { $status == "pass" } then { set et_ultrasparc_hw_saved 1 } } else { verbose "check_ultrasparc_hw_available testfile compilation failed" 2 } } return $et_ultrasparc_hw_saved } # Return 1 if the target supports hardware vector shift operation. proc check_effective_target_vect_shift { } { global et_vect_shift_saved if [info exists et_vect_shift_saved] { verbose "check_effective_target_vect_shift: using cached result" 2 } else { set et_vect_shift_saved 0 if { [istarget powerpc*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_shift_saved 1 } } verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2 return $et_vect_shift_saved } # Return 1 if the target supports hardware vectors of long, 0 otherwise. # # This can change for different subtargets so do not cache the result. proc check_effective_target_vect_long { } { if { [istarget i?86-*-*] || ([istarget powerpc*-*-*] && [check_effective_target_ilp32]) || [istarget x86_64-*-*] || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } { set answer 1 } else { set answer 0 } verbose "check_effective_target_vect_long: returning $answer" 2 return $answer } # Return 1 if the target supports hardware vectors of float, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_float { } { global et_vect_float_saved if [info exists et_vect_float_saved] { verbose "check_effective_target_vect_float: using cached result" 2 } else { set et_vect_float_saved 0 if { [istarget i?86-*-*] || [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget mipsisa64*-*-*] || [istarget x86_64-*-*] || [istarget ia64-*-*] } { set et_vect_float_saved 1 } } verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2 return $et_vect_float_saved } # Return 1 if the target supports hardware vectors of double, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_double { } { global et_vect_double_saved if [info exists et_vect_double_saved] { verbose "check_effective_target_vect_double: using cached result" 2 } else { set et_vect_double_saved 0 if { [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget spu-*-*] } { set et_vect_double_saved 1 } } verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2 return $et_vect_double_saved } # Return 1 if the target supports hardware comparison of vectors of double, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_compare_double { } { global et_vect_no_compare_double_saved if [info exists et_vect_no_compare_double_saved] { verbose "check_effective_target_vect_no_compare_double: using cached result" 2 } else { set et_vect_no_compare_double_saved 0 } verbose "check_effective_target_vect_no_compare_double: returning $et_vect_no_compare_double_saved" 2 return $et_vect_no_compare_double_saved } # Return 1 if the target plus current options does not support a vector # max instruction on "int", 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_int_max { } { global et_vect_no_int_max_saved if [info exists et_vect_no_int_max_saved] { verbose "check_effective_target_vect_no_int_max: using cached result" 2 } else { set et_vect_no_int_max_saved 0 if { [istarget sparc*-*-*] || [istarget spu-*-*] || [istarget alpha*-*-*] } { set et_vect_no_int_max_saved 1 } } verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2 return $et_vect_no_int_max_saved } # Return 1 if the target plus current options does not support a vector # add instruction on "int", 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_int_add { } { global et_vect_no_int_add_saved if [info exists et_vect_no_int_add_saved] { verbose "check_effective_target_vect_no_int_add: using cached result" 2 } else { set et_vect_no_int_add_saved 0 # Alpha only supports vector add on V8QI and V4HI. if { [istarget alpha*-*-*] } { set et_vect_no_int_add_saved 1 } } verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2 return $et_vect_no_int_add_saved } # Return 1 if the target plus current options does not support vector # bitwise instructions, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_bitwise { } { global et_vect_no_bitwise_saved if [info exists et_vect_no_bitwise_saved] { verbose "check_effective_target_vect_no_bitwise: using cached result" 2 } else { set et_vect_no_bitwise_saved 0 } verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2 return $et_vect_no_bitwise_saved } # Return 1 if the target plus current options supports a vector # widening summation of *short* args into *int* result, 0 otherwise. # A target can also support this widening summation if it can support # promotion (unpacking) from shorts to ints. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_hi_to_si { } { global et_vect_widen_sum_hi_to_si if [info exists et_vect_widen_sum_hi_to_si_saved] { verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2 } else { set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack] if { [istarget powerpc*-*-*] || [istarget ia64-*-*] } { set et_vect_widen_sum_hi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2 return $et_vect_widen_sum_hi_to_si_saved } # Return 1 if the target plus current options supports a vector # widening summation of *char* args into *short* result, 0 otherwise. # A target can also support this widening summation if it can support # promotion (unpacking) from chars to shorts. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_qi_to_hi { } { global et_vect_widen_sum_qi_to_hi if [info exists et_vect_widen_sum_qi_to_hi_saved] { verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2 } else { set et_vect_widen_sum_qi_to_hi_saved 0 if { [check_effective_target_vect_unpack] || [istarget ia64-*-*] } { set et_vect_widen_sum_qi_to_hi_saved 1 } } verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2 return $et_vect_widen_sum_qi_to_hi_saved } # Return 1 if the target plus current options supports a vector # widening summation of *char* args into *int* result, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_sum_qi_to_si { } { global et_vect_widen_sum_qi_to_si if [info exists et_vect_widen_sum_qi_to_si_saved] { verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2 } else { set et_vect_widen_sum_qi_to_si_saved 0 if { [istarget powerpc*-*-*] } { set et_vect_widen_sum_qi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2 return $et_vect_widen_sum_qi_to_si_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *char* args into *short* result, 0 otherwise. # A target can also support this widening multplication if it can support # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening # multiplication of shorts). # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_qi_to_hi { } { global et_vect_widen_mult_qi_to_hi if [info exists et_vect_widen_mult_qi_to_hi_saved] { verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2 } else { if { [check_effective_target_vect_unpack] && [check_effective_target_vect_short_mult] } { set et_vect_widen_mult_qi_to_hi_saved 1 } else { set et_vect_widen_mult_qi_to_hi_saved 0 } if { [istarget powerpc*-*-*] } { set et_vect_widen_mult_qi_to_hi_saved 1 } } verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2 return $et_vect_widen_mult_qi_to_hi_saved } # Return 1 if the target plus current options supports a vector # widening multiplication of *short* args into *int* result, 0 otherwise. # A target can also support this widening multplication if it can support # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening # multiplication of ints). # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_widen_mult_hi_to_si { } { global et_vect_widen_mult_hi_to_si if [info exists et_vect_widen_mult_hi_to_si_saved] { verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2 } else { if { [check_effective_target_vect_unpack] && [check_effective_target_vect_int_mult] } { set et_vect_widen_mult_hi_to_si_saved 1 } else { set et_vect_widen_mult_hi_to_si_saved 0 } if { [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_widen_mult_hi_to_si_saved 1 } } verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2 return $et_vect_widen_mult_hi_to_si_saved } # Return 1 if the target plus current options supports a vector # dot-product of signed chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_sdot_qi { } { global et_vect_sdot_qi if [info exists et_vect_sdot_qi_saved] { verbose "check_effective_target_vect_sdot_qi: using cached result" 2 } else { set et_vect_sdot_qi_saved 0 } verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2 return $et_vect_sdot_qi_saved } # Return 1 if the target plus current options supports a vector # dot-product of unsigned chars, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_udot_qi { } { global et_vect_udot_qi if [info exists et_vect_udot_qi_saved] { verbose "check_effective_target_vect_udot_qi: using cached result" 2 } else { set et_vect_udot_qi_saved 0 if { [istarget powerpc*-*-*] } { set et_vect_udot_qi_saved 1 } } verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2 return $et_vect_udot_qi_saved } # Return 1 if the target plus current options supports a vector # dot-product of signed shorts, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_sdot_hi { } { global et_vect_sdot_hi if [info exists et_vect_sdot_hi_saved] { verbose "check_effective_target_vect_sdot_hi: using cached result" 2 } else { set et_vect_sdot_hi_saved 0 if { [istarget powerpc*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_sdot_hi_saved 1 } } verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2 return $et_vect_sdot_hi_saved } # Return 1 if the target plus current options supports a vector # dot-product of unsigned shorts, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_udot_hi { } { global et_vect_udot_hi if [info exists et_vect_udot_hi_saved] { verbose "check_effective_target_vect_udot_hi: using cached result" 2 } else { set et_vect_udot_hi_saved 0 if { [istarget powerpc*-*-*] } { set et_vect_udot_hi_saved 1 } } verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2 return $et_vect_udot_hi_saved } # Return 1 if the target plus current options supports a vector # demotion (packing) of shorts (to chars) and ints (to shorts) # using modulo arithmetic, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_pack_trunc { } { global et_vect_pack_trunc if [info exists et_vect_pack_trunc_saved] { verbose "check_effective_target_vect_pack_trunc: using cached result" 2 } else { set et_vect_pack_trunc_saved 0 if { [istarget powerpc*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_pack_trunc_saved 1 } } verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2 return $et_vect_pack_trunc_saved } # Return 1 if the target plus current options supports a vector # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_unpack { } { global et_vect_unpack if [info exists et_vect_unpack_saved] { verbose "check_effective_target_vect_unpack: using cached result" 2 } else { set et_vect_unpack_saved 0 if { [istarget powerpc*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_unpack_saved 1 } } verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2 return $et_vect_unpack_saved } # Return 1 if the target plus current options does not support a vector # alignment mechanism, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_no_align { } { global et_vect_no_align_saved if [info exists et_vect_no_align_saved] { verbose "check_effective_target_vect_no_align: using cached result" 2 } else { set et_vect_no_align_saved 0 if { [istarget mipsisa64*-*-*] || [istarget sparc*-*-*] || [istarget ia64-*-*] } { set et_vect_no_align_saved 1 } } verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2 return $et_vect_no_align_saved } # Return 1 if arrays are aligned to the vector alignment # boundary, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vect_aligned_arrays { } { global et_vect_aligned_arrays if [info exists et_vect_aligned_arrays_saved] { verbose "check_effective_target_vect_aligned_arrays: using cached result" 2 } else { set et_vect_aligned_arrays_saved 0 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) && [is-effective-target lp64] } { set et_vect_aligned_arrays_saved 1 } } verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2 return $et_vect_aligned_arrays_saved } # Return 1 if types are naturally aligned (aligned to their type-size), # 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_natural_alignment { } { global et_natural_alignment if [info exists et_natural_alignment_saved] { verbose "check_effective_target_natural_alignment: using cached result" 2 } else { set et_natural_alignment_saved 0 if { [istarget spu-*-*] } { set et_natural_alignment_saved 1 } } verbose "check_effective_target_natural_alignment: returning $et_natural_alignment_saved" 2 return $et_natural_alignment_saved } # Return 1 if vector alignment is reachable, 0 otherwise. # # This won't change for different subtargets so cache the result. proc check_effective_target_vector_alignment_reachable { } { global et_vector_alignment_reachable if [info exists et_vector_alignment_reachable_saved] { verbose "check_effective_target_vector_alignment_reachable: using cached result" 2 } else { if { [check_effective_target_vect_aligned_arrays] || [check_effective_target_natural_alignment] } { set et_vector_alignment_reachable_saved 1 } else { set et_vector_alignment_reachable_saved 0 } } verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2 return $et_vector_alignment_reachable_saved } # Return 1 if the target supports vector conditional operations, 0 otherwise. proc check_effective_target_vect_condition { } { global et_vect_cond_saved if [info exists et_vect_cond_saved] { verbose "check_effective_target_vect_cond: using cached result" 2 } else { set et_vect_cond_saved 0 if { [istarget powerpc*-*-*] || [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget spu-*-*] || [istarget x86_64-*-*] } { set et_vect_cond_saved 1 } } verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2 return $et_vect_cond_saved } # Return 1 if the target supports vector char multiplication, 0 otherwise. proc check_effective_target_vect_char_mult { } { global et_vect_char_mult_saved if [info exists et_vect_char_mult_saved] { verbose "check_effective_target_vect_char_mult: using cached result" 2 } else { set et_vect_char_mult_saved 0 if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_char_mult_saved 1 } } verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2 return $et_vect_char_mult_saved } # Return 1 if the target supports vector short multiplication, 0 otherwise. proc check_effective_target_vect_short_mult { } { global et_vect_short_mult_saved if [info exists et_vect_short_mult_saved] { verbose "check_effective_target_vect_short_mult: using cached result" 2 } else { set et_vect_short_mult_saved 0 if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_short_mult_saved 1 } } verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2 return $et_vect_short_mult_saved } # Return 1 if the target supports vector int multiplication, 0 otherwise. proc check_effective_target_vect_int_mult { } { global et_vect_int_mult_saved if [info exists et_vect_int_mult_saved] { verbose "check_effective_target_vect_int_mult: using cached result" 2 } else { set et_vect_int_mult_saved 0 if { [istarget powerpc*-*-*] || [istarget spu-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_int_mult_saved 1 } } verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2 return $et_vect_int_mult_saved } # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise. proc check_effective_target_vect_extract_even_odd { } { global et_vect_extract_even_odd_saved if [info exists et_vect_extract_even_odd_saved] { verbose "check_effective_target_vect_extract_even_odd: using cached result" 2 } else { set et_vect_extract_even_odd_saved 0 if { [istarget powerpc*-*-*] } { set et_vect_extract_even_odd_saved 1 } } verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2 return $et_vect_extract_even_odd_saved } # Return 1 if the target supports vector interleaving, 0 otherwise. proc check_effective_target_vect_interleave { } { global et_vect_interleave_saved if [info exists et_vect_interleave_saved] { verbose "check_effective_target_vect_interleave: using cached result" 2 } else { set et_vect_interleave_saved 0 if { [istarget powerpc*-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] } { set et_vect_interleave_saved 1 } } verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2 return $et_vect_interleave_saved } # Return 1 if the target supports section-anchors proc check_effective_target_section_anchors { } { global et_section_anchors_saved if [info exists et_section_anchors_saved] { verbose "check_effective_target_section_anchors: using cached result" 2 } else { set et_section_anchors_saved 0 if { [istarget powerpc*-*-*] } { set et_section_anchors_saved 1 } } verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2 return $et_section_anchors_saved } # Return 1 if the target supports atomic operations on "int" and "long". proc check_effective_target_sync_int_long { } { global et_sync_int_long_saved if [info exists et_sync_int_long_saved] { verbose "check_effective_target_sync_int_long: using cached result" 2 } else { set et_sync_int_long_saved 0 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the # load-reserved/store-conditional instructions. if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget alpha*-*-*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget sparc64-*-*] || [istarget sparcv9-*-*] || [istarget xtensa-*-*] } { set et_sync_int_long_saved 1 } } verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2 return $et_sync_int_long_saved } # Return 1 if the target supports atomic operations on "char" and "short". proc check_effective_target_sync_char_short { } { global et_sync_char_short_saved if [info exists et_sync_char_short_saved] { verbose "check_effective_target_sync_char_short: using cached result" 2 } else { set et_sync_char_short_saved 0 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the # load-reserved/store-conditional instructions. if { [istarget ia64-*-*] || [istarget i?86-*-*] || [istarget x86_64-*-*] || [istarget alpha*-*-*] || [istarget s390*-*-*] || [istarget powerpc*-*-*] || [istarget sparc64-*-*] || [istarget sparcv9-*-*] || [istarget xtensa-*-*] } { set et_sync_char_short_saved 1 } } verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2 return $et_sync_char_short_saved } # Return 1 if the target uses a ColdFire FPU. proc check_effective_target_coldfire_fpu { } { return [check_no_compiler_messages coldfire_fpu assembly { #ifndef __mcffpu__ #error FOO #endif }] } # Return true if this is a uClibc target. proc check_effective_target_uclibc {} { return [check_no_compiler_messages uclibc object { #include #if !defined (__UCLIBC__) #error FOO #endif }] } # Return true if this is a uclibc target and if the uclibc feature # described by __$feature__ is not present. proc check_missing_uclibc_feature {feature} { return [check_no_compiler_messages $feature object " #include #if !defined (__UCLIBC) || defined (__${feature}__) #error FOO #endif "] } # Return true if this is a Newlib target. proc check_effective_target_newlib {} { return [check_no_compiler_messages newlib object { #include }] } # Return 1 if # (a) an error of a few ULP is expected in string to floating-point # conversion functions; and # (b) overflow is not always detected correctly by those functions. proc check_effective_target_lax_strtofp {} { # By default, assume that all uClibc targets suffer from this. return [check_effective_target_uclibc] } # Return 1 if this is a target for which wcsftime is a dummy # function that always returns 0. proc check_effective_target_dummy_wcsftime {} { # By default, assume that all uClibc targets suffer from this. return [check_effective_target_uclibc] } # Return 1 if constructors with initialization priority arguments are # supposed on this target. proc check_effective_target_init_priority {} { return [check_no_compiler_messages init_priority assembly " void f() __attribute__((constructor (1000))); void f() \{\} "] } # Return 1 if the target matches the effective target 'arg', 0 otherwise. # This can be used with any check_* proc that takes no argument and # returns only 1 or 0. It could be used with check_* procs that take # arguments with keywords that pass particular arguments. proc is-effective-target { arg } { set selected 0 if { [info procs check_effective_target_${arg}] != [list] } { set selected [check_effective_target_${arg}] } else { switch $arg { "vmx_hw" { set selected [check_vmx_hw_available] } "named_sections" { set selected [check_named_sections_available] } "gc_sections" { set selected [check_gc_sections_available] } "cxa_atexit" { set selected [check_cxa_atexit_available] } default { error "unknown effective target keyword `$arg'" } } } verbose "is-effective-target: $arg $selected" 2 return $selected } # Return 1 if the argument is an effective-target keyword, 0 otherwise. proc is-effective-target-keyword { arg } { if { [info procs check_effective_target_${arg}] != [list] } { return 1 } else { # These have different names for their check_* procs. switch $arg { "vmx_hw" { return 1 } "named_sections" { return 1 } "gc_sections" { return 1 } "cxa_atexit" { return 1 } default { return 0 } } } } # Return 1 if target default to short enums proc check_effective_target_short_enums { } { return [check_no_compiler_messages short_enums assembly { enum foo { bar }; int s[sizeof (enum foo) == 1 ? 1 : -1]; }] } # Return 1 if target supports merging string constants at link time. proc check_effective_target_string_merging { } { return [check_no_messages_and_pattern string_merging \ "rodata\\.str" assembly { const char *var = "String"; } {-O2}] } # Return 1 if target has the basic signed and unsigned types in # , 0 otherwise. proc check_effective_target_stdint_types { } { return [check_no_compiler_messages stdint_types assembly { #include int8_t a; int16_t b; int32_t c; int64_t d; uint8_t e; uint16_t f; uint32_t g; uint64_t h; }] } # Return 1 if programs are intended to be run on a simulator # (i.e. slowly) rather than hardware (i.e. fast). proc check_effective_target_simulator { } { # All "src/sim" simulators set this one. if [board_info target exists is_simulator] { return [board_info target is_simulator] } # The "sid" simulators don't set that one, but at least they set # this one. if [board_info target exists slow_simulator] { return [board_info target slow_simulator] } return 0 } # Return 1 if the target is a VxWorks RTP. proc check_effective_target_vxworks_kernel { } { return [check_no_compiler_messages vxworks_kernel assembly { #if !defined __vxworks || defined __RTP__ #error NO #endif }] } # Return 1 if the target is expected to provide wide character support. proc check_effective_target_wchar { } { if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} { return 0 } return [check_no_compiler_messages wchar assembly { #include }] }