------------------------------------------------------------------------------ -- -- -- GNAT RUN-TIME COMPONENTS -- -- -- -- S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2006-2011, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ package body System.Generic_Array_Operations is -- The local function Check_Unit_Last computes the index -- of the last element returned by Unit_Vector or Unit_Matrix. -- A separate function is needed to allow raising Constraint_Error -- before declaring the function result variable. The result variable -- needs to be declared first, to allow front-end inlining. function Check_Unit_Last (Index : Integer; Order : Positive; First : Integer) return Integer; pragma Inline_Always (Check_Unit_Last); -------------- -- Diagonal -- -------------- function Diagonal (A : Matrix) return Vector is N : constant Natural := Natural'Min (A'Length (1), A'Length (2)); R : Vector (A'First (1) .. A'First (1) + N - 1); begin for J in 0 .. N - 1 loop R (R'First + J) := A (A'First (1) + J, A'First (2) + J); end loop; return R; end Diagonal; -------------------------- -- Square_Matrix_Length -- -------------------------- function Square_Matrix_Length (A : Matrix) return Natural is begin if A'Length (1) /= A'Length (2) then raise Constraint_Error with "matrix is not square"; end if; return A'Length (1); end Square_Matrix_Length; --------------------- -- Check_Unit_Last -- --------------------- function Check_Unit_Last (Index : Integer; Order : Positive; First : Integer) return Integer is begin -- Order the tests carefully to avoid overflow if Index < First or else First > Integer'Last - Order + 1 or else Index > First + (Order - 1) then raise Constraint_Error; end if; return First + (Order - 1); end Check_Unit_Last; --------------------- -- Back_Substitute -- --------------------- procedure Back_Substitute (M, N : in out Matrix) is pragma Assert (M'First (1) = N'First (1) and then M'Last (1) = N'Last (1)); Max_Col : Integer := M'Last (2); procedure Sub_Row (M : in out Matrix; Target : Integer; Source : Integer; Factor : Scalar); -- Needs comments ??? procedure Sub_Row (M : in out Matrix; Target : Integer; Source : Integer; Factor : Scalar) is begin for J in M'Range (2) loop M (Target, J) := M (Target, J) - Factor * M (Source, J); end loop; end Sub_Row; -- Start of processing for Back_Substitute begin for Row in reverse M'Range (1) loop Find_Non_Zero : for Col in M'First (2) .. Max_Col loop if Is_Non_Zero (M (Row, Col)) then -- Found first non-zero element, so subtract a multiple -- of this row from all higher rows, to reduce all other -- elements in this column to zero. for J in M'First (1) .. Row - 1 loop Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col))); Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col))); end loop; Max_Col := Col - 1; exit Find_Non_Zero; end if; end loop Find_Non_Zero; end loop; end Back_Substitute; ----------------------- -- Forward_Eliminate -- ----------------------- procedure Forward_Eliminate (M : in out Matrix; N : in out Matrix; Det : out Scalar) is pragma Assert (M'First (1) = N'First (1) and then M'Last (1) = N'Last (1)); function "abs" (X : Scalar) return Scalar is (if X < Zero then Zero - X else X); procedure Sub_Row (M : in out Matrix; Target : Integer; Source : Integer; Factor : Scalar); -- Needs commenting ??? procedure Divide_Row (M, N : in out Matrix; Row : Integer; Scale : Scalar); -- Needs commenting ??? procedure Switch_Row (M, N : in out Matrix; Row_1 : Integer; Row_2 : Integer); -- Needs commenting ??? ------------- -- Sub_Row -- ------------- procedure Sub_Row (M : in out Matrix; Target : Integer; Source : Integer; Factor : Scalar) is begin for J in M'Range (2) loop M (Target, J) := M (Target, J) - Factor * M (Source, J); end loop; end Sub_Row; ---------------- -- Divide_Row -- ---------------- procedure Divide_Row (M, N : in out Matrix; Row : Integer; Scale : Scalar) is begin Det := Det * Scale; for J in M'Range (2) loop M (Row, J) := M (Row, J) / Scale; end loop; for J in N'Range (2) loop N (Row - M'First (1) + N'First (1), J) := N (Row - M'First (1) + N'First (1), J) / Scale; end loop; end Divide_Row; ---------------- -- Switch_Row -- ---------------- procedure Switch_Row (M, N : in out Matrix; Row_1 : Integer; Row_2 : Integer) is procedure Swap (X, Y : in out Scalar); -- Exchange the values of X and Y procedure Swap (X, Y : in out Scalar) is T : constant Scalar := X; begin X := Y; Y := T; end Swap; -- Start of processing for Switch_Row begin if Row_1 /= Row_2 then Det := Zero - Det; for J in M'Range (2) loop Swap (M (Row_1, J), M (Row_2, J)); end loop; for J in N'Range (2) loop Swap (N (Row_1 - M'First (1) + N'First (1), J), N (Row_2 - M'First (1) + N'First (1), J)); end loop; end if; end Switch_Row; I : Integer := M'First (1); -- Avoid use of I ??? -- Start of processing for Forward_Eliminate begin Det := One; for J in M'Range (2) loop declare Max_I : Integer := I; Max_Abs : Scalar := Zero; begin -- Find best pivot in column J, starting in row I for K in I .. M'Last (1) loop declare New_Abs : constant Scalar := abs M (K, J); begin if Max_Abs < New_Abs then Max_Abs := New_Abs; Max_I := K; end if; end; end loop; if Zero < Max_Abs then Switch_Row (M, N, I, Max_I); Divide_Row (M, N, I, M (I, J)); for U in I + 1 .. M'Last (1) loop Sub_Row (N, U, I, M (U, J)); Sub_Row (M, U, I, M (U, J)); end loop; exit when I >= M'Last (1); I := I + 1; else Det := Zero; -- Zero, but we don't have literals end if; end; end loop; end Forward_Eliminate; ------------------- -- Inner_Product -- ------------------- function Inner_Product (Left : Left_Vector; Right : Right_Vector) return Result_Scalar is R : Result_Scalar := Zero; begin if Left'Length /= Right'Length then raise Constraint_Error with "vectors are of different length in inner product"; end if; for J in Left'Range loop R := R + Left (J) * Right (J - Left'First + Right'First); end loop; return R; end Inner_Product; ------------- -- L2_Norm -- ------------- function L2_Norm (X : Vector) return Scalar is begin return Sqrt (Inner_Product (X, X)); end L2_Norm; ---------------------------------- -- Matrix_Elementwise_Operation -- ---------------------------------- function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is R : Result_Matrix (X'Range (1), X'Range (2)); begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (X (J, K)); end loop; end loop; return R; end Matrix_Elementwise_Operation; ---------------------------------- -- Vector_Elementwise_Operation -- ---------------------------------- function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is R : Result_Vector (X'Range); begin for J in R'Range loop R (J) := Operation (X (J)); end loop; return R; end Vector_Elementwise_Operation; ----------------------------------------- -- Matrix_Matrix_Elementwise_Operation -- ----------------------------------------- function Matrix_Matrix_Elementwise_Operation (Left : Left_Matrix; Right : Right_Matrix) return Result_Matrix is R : Result_Matrix (Left'Range (1), Left'Range (2)); begin if Left'Length (1) /= Right'Length (1) or else Left'Length (2) /= Right'Length (2) then raise Constraint_Error with "matrices are of different dimension in elementwise operation"; end if; for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (Left (J, K), Right (J - R'First (1) + Right'First (1), K - R'First (2) + Right'First (2))); end loop; end loop; return R; end Matrix_Matrix_Elementwise_Operation; ------------------------------------------------ -- Matrix_Matrix_Scalar_Elementwise_Operation -- ------------------------------------------------ function Matrix_Matrix_Scalar_Elementwise_Operation (X : X_Matrix; Y : Y_Matrix; Z : Z_Scalar) return Result_Matrix is R : Result_Matrix (X'Range (1), X'Range (2)); begin if X'Length (1) /= Y'Length (1) or else X'Length (2) /= Y'Length (2) then raise Constraint_Error with "matrices are of different dimension in elementwise operation"; end if; for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (X (J, K), Y (J - R'First (1) + Y'First (1), K - R'First (2) + Y'First (2)), Z); end loop; end loop; return R; end Matrix_Matrix_Scalar_Elementwise_Operation; ----------------------------------------- -- Vector_Vector_Elementwise_Operation -- ----------------------------------------- function Vector_Vector_Elementwise_Operation (Left : Left_Vector; Right : Right_Vector) return Result_Vector is R : Result_Vector (Left'Range); begin if Left'Length /= Right'Length then raise Constraint_Error with "vectors are of different length in elementwise operation"; end if; for J in R'Range loop R (J) := Operation (Left (J), Right (J - R'First + Right'First)); end loop; return R; end Vector_Vector_Elementwise_Operation; ------------------------------------------------ -- Vector_Vector_Scalar_Elementwise_Operation -- ------------------------------------------------ function Vector_Vector_Scalar_Elementwise_Operation (X : X_Vector; Y : Y_Vector; Z : Z_Scalar) return Result_Vector is R : Result_Vector (X'Range); begin if X'Length /= Y'Length then raise Constraint_Error with "vectors are of different length in elementwise operation"; end if; for J in R'Range loop R (J) := Operation (X (J), Y (J - X'First + Y'First), Z); end loop; return R; end Vector_Vector_Scalar_Elementwise_Operation; ----------------------------------------- -- Matrix_Scalar_Elementwise_Operation -- ----------------------------------------- function Matrix_Scalar_Elementwise_Operation (Left : Left_Matrix; Right : Right_Scalar) return Result_Matrix is R : Result_Matrix (Left'Range (1), Left'Range (2)); begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (Left (J, K), Right); end loop; end loop; return R; end Matrix_Scalar_Elementwise_Operation; ----------------------------------------- -- Vector_Scalar_Elementwise_Operation -- ----------------------------------------- function Vector_Scalar_Elementwise_Operation (Left : Left_Vector; Right : Right_Scalar) return Result_Vector is R : Result_Vector (Left'Range); begin for J in R'Range loop R (J) := Operation (Left (J), Right); end loop; return R; end Vector_Scalar_Elementwise_Operation; ----------------------------------------- -- Scalar_Matrix_Elementwise_Operation -- ----------------------------------------- function Scalar_Matrix_Elementwise_Operation (Left : Left_Scalar; Right : Right_Matrix) return Result_Matrix is R : Result_Matrix (Right'Range (1), Right'Range (2)); begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Operation (Left, Right (J, K)); end loop; end loop; return R; end Scalar_Matrix_Elementwise_Operation; ----------------------------------------- -- Scalar_Vector_Elementwise_Operation -- ----------------------------------------- function Scalar_Vector_Elementwise_Operation (Left : Left_Scalar; Right : Right_Vector) return Result_Vector is R : Result_Vector (Right'Range); begin for J in R'Range loop R (J) := Operation (Left, Right (J)); end loop; return R; end Scalar_Vector_Elementwise_Operation; --------------------------- -- Matrix_Matrix_Product -- --------------------------- function Matrix_Matrix_Product (Left : Left_Matrix; Right : Right_Matrix) return Result_Matrix is R : Result_Matrix (Left'Range (1), Right'Range (2)); begin if Left'Length (2) /= Right'Length (1) then raise Constraint_Error with "incompatible dimensions in matrix multiplication"; end if; for J in R'Range (1) loop for K in R'Range (2) loop declare S : Result_Scalar := Zero; begin for M in Left'Range (2) loop S := S + Left (J, M) * Right (M - Left'First (2) + Right'First (1), K); end loop; R (J, K) := S; end; end loop; end loop; return R; end Matrix_Matrix_Product; --------------------------- -- Matrix_Vector_Product -- --------------------------- function Matrix_Vector_Product (Left : Matrix; Right : Right_Vector) return Result_Vector is R : Result_Vector (Left'Range (1)); begin if Left'Length (2) /= Right'Length then raise Constraint_Error with "incompatible dimensions in matrix-vector multiplication"; end if; for J in Left'Range (1) loop declare S : Result_Scalar := Zero; begin for K in Left'Range (2) loop S := S + Left (J, K) * Right (K - Left'First (2) + Right'First); end loop; R (J) := S; end; end loop; return R; end Matrix_Vector_Product; ------------------- -- Outer_Product -- ------------------- function Outer_Product (Left : Left_Vector; Right : Right_Vector) return Matrix is R : Matrix (Left'Range, Right'Range); begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := Left (J) * Right (K); end loop; end loop; return R; end Outer_Product; ----------------- -- Swap_Column -- ----------------- procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is Temp : Scalar; begin for J in A'Range (1) loop Temp := A (J, Left); A (J, Left) := A (J, Right); A (J, Right) := Temp; end loop; end Swap_Column; --------------- -- Transpose -- --------------- procedure Transpose (A : Matrix; R : out Matrix) is begin for J in R'Range (1) loop for K in R'Range (2) loop R (J, K) := A (K - R'First (2) + A'First (1), J - R'First (1) + A'First (2)); end loop; end loop; end Transpose; ------------------------------- -- Update_Matrix_With_Matrix -- ------------------------------- procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is begin if X'Length (1) /= Y'Length (1) or else X'Length (2) /= Y'Length (2) then raise Constraint_Error with "matrices are of different dimension in update operation"; end if; for J in X'Range (1) loop for K in X'Range (2) loop Update (X (J, K), Y (J - X'First (1) + Y'First (1), K - X'First (2) + Y'First (2))); end loop; end loop; end Update_Matrix_With_Matrix; ------------------------------- -- Update_Vector_With_Vector -- ------------------------------- procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is begin if X'Length /= Y'Length then raise Constraint_Error with "vectors are of different length in update operation"; end if; for J in X'Range loop Update (X (J), Y (J - X'First + Y'First)); end loop; end Update_Vector_With_Vector; ----------------- -- Unit_Matrix -- ----------------- function Unit_Matrix (Order : Positive; First_1 : Integer := 1; First_2 : Integer := 1) return Matrix is R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1), First_2 .. Check_Unit_Last (First_2, Order, First_2)); begin R := (others => (others => Zero)); for J in 0 .. Order - 1 loop R (First_1 + J, First_2 + J) := One; end loop; return R; end Unit_Matrix; ----------------- -- Unit_Vector -- ----------------- function Unit_Vector (Index : Integer; Order : Positive; First : Integer := 1) return Vector is R : Vector (First .. Check_Unit_Last (Index, Order, First)); begin R := (others => Zero); R (Index) := One; return R; end Unit_Vector; --------------------------- -- Vector_Matrix_Product -- --------------------------- function Vector_Matrix_Product (Left : Left_Vector; Right : Matrix) return Result_Vector is R : Result_Vector (Right'Range (2)); begin if Left'Length /= Right'Length (2) then raise Constraint_Error with "incompatible dimensions in vector-matrix multiplication"; end if; for J in Right'Range (2) loop declare S : Result_Scalar := Zero; begin for K in Right'Range (1) loop S := S + Left (J - Right'First (1) + Left'First) * Right (K, J); end loop; R (J) := S; end; end loop; return R; end Vector_Matrix_Product; end System.Generic_Array_Operations;