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Abstract

The Three-Dimensional Bin Packing Problem (3BP) consists of allocating, without overlapping, a given set of three-

dimensional rectangular items to the minimum number of three-dimensional identical finite bins. The problem is NP-

hard in the strong sense, and finds many industrial applications. We introduce a Tabu Search framework exploiting a

new constructive heuristic for the evaluation of the neighborhood. Extensive computational results on standard

benchmark instances show the effectiveness of the approach with respect to exact and heuristic algorithms from the

literature. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a set of n three-dimensional rectangular
items, each characterized by width wj, height hj
and depth dj ðj 2 J ¼ f1; . . . ; ngÞ, and an unlim-
ited number of identical three-dimensional rect-
angular containers (bins) having width W, height
H and depth D, the Three-Dimensional Bin Pack-
ing Problem (3BP) consists of orthogonally pack-
ing, without overlapping, all the items into the
minimum number of bins. It is assumed that the

items have fixed orientation, i.e., they cannot be
rotated. We will call base of an item (resp. bin) its
wj � hj (resp. W � H ) side. We assume, without
loss of generality, that all the input data are pos-
itive integers, and that wj 6W , hj 6H and dj 6D
(j 2 J ).
The problem is strongly NP-hard as it general-

izes the (one-dimensional) Bin Packing Problem
(1BP), in which a set of n positive values wj has to
be partitioned into the minimum number of sub-
sets so that the total value in each subset does
not exceed a given bin capacity W. Problem 3BP
also generalizes the Two-Dimensional Bin Packing
Problem (2BP), which consists of determining the
minimum number of identical rectangular bins of
width W and height H needed to orthogonally
pack a given set of n rectangles having width wj

and height hj (j 2 J ). Another related problem is
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the Three-Dimensional Strip Packing Problem
(3SP), in which there is a single bin (strip) of width
W, depth D and infinite height, and we want to
pack all the items into a strip of minimum height.
Three-dimensional packing problems have rel-

evant practical interest in industrial applications
such as, e.g., cutting of foam rubber in arm-chair
production, container and pallet loading, and
packaging design. Although 3BP is a simplified
version of real-world problems, in many cases it
arises as a subproblem.
Martello et al. [8] presented exact and heuristic

approaches to three-dimensional packing prob-
lems. Færø et al. [4] recently proposed a Guided
Local Search heuristic for 3BP, based on iterative
solution of constraint satisfaction problems. As far
as 1BP and 2BP are concerned the reader is re-
ferred to the surveys by Coffman et al. [1,2] and
Lodi et al. [6], and to the annotated bibliography
by Dyckhoff et al. [3].
In this paper we present a new approximation

algorithm for 3BP, and discuss its use as subor-
dinate heuristic within a Tabu Search metaheu-
ristic approach derived from that proposed by
Lodi et al. [7] for 2BP. The approximation algo-
rithm is presented in Section 2, and the Tabu
Search approach in Section 3. Finally, Section 4
gives the outcome of extensive computational ex-
periments. A preliminary version of the algorithms
is described in Lodi [5].

2. Heuristic algorithm

The 3BP heuristic algorithm we propose packs
the items by layers. The floor of the first layer
coincides with the base of a bin, and the items are
packed with their bases on it. The floor of each
subsequent layer in the bin is defined by the height
of the tallest item packed into the layer below.
In order to produce an ‘‘effective’’ packing into

layers one has to consider two main, possibly
conflicting, issues: (i) to obtain a good ‘‘vertical’’
filling, by packing items with similar height in the
same layer; (ii) to obtain a good ‘‘horizontal’’
filling, by effectively solving the two-dimensional
packing of the item bases on the layer floors. To
this end, the proposed algorithm, that will be

called Height first–Area second (HA), chooses the
best of two possible solutions (each enhancing one
of the two issues), and can logically be subdivided
into two phases:

1. The items are partitioned into clusters charac-
terized by non-increasing height, and a layered
strip packing solution is determined. The first
3BP solution is then constructed by combining
the obtained layers into finite bins through a
1BP algorithm.

2. The items are re-sorted by non-increasing area
of their base and re-allocated to the current lay-
ers, possibly modifying the layer heights, and
the second solution is obtained through the
1BP algorithm.

The two phases above are described in more
detail in the following sections.

2.1. Phase 1

The algorithm starts by sorting the items by
non-increasing height. The items are then parti-
tioned into clusters, each characterized by a dif-
ferent height, as follows. The first (tallest) item j
defines the first cluster with height hj, which in-
cludes all items having height hk satisfying
hk P bhj, where b (b 2 ½0; 1	) is a prefixed para-
meter. The tallest item s for which hs < bhj defines
the next cluster with height hs, and so on. The
items in each cluster are then sorted by non-
increasing wjdj value, and the item set is renum-
bered, by increasing cluster, following the new
order.
Note that the value of b determines the way the

items are partitioned into clusters. A value close to
zero produces very few clusters and disregards the
item heights, while a value close to one produces a
very large number of clusters and disregards the
area of the item bases. A good value should ap-
propriately take into account both information.
Through preliminary experimental evaluations we
determined b ¼ 0:75 as the value producing, on
average, the partitions leading to the best pac-
kings.
The first item of the first cluster initializes the

first layer: it is packed with its back left corner in
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the back left corner of the floor. The next items are
packed one at a time, by increasing cluster and
index. Given any point p on a layer floor, we will
say that an item is packed in position p if its back
left corner is on p.
Consider any packing pattern relative to a layer

‘: it is well known that there exists an equivalent
pattern (called normal pattern) in which no item
base can be moved leftwards or backwards. We
will always consider normal patterns. At each it-
eration, the next (tallest) unpacked item j is packed
in the layer ‘
 and the normal position p
 deter-
mined through a score Sðj; ‘; pÞ, whose three terms
(see Eq. (1) below) take into account, respectively,
three different factors:
(i) the fraction of the perimeter of the base of j
which touches the edges of the floor of ‘ or the
edges of items already packed in ‘;
(ii) the already packed portion of the floor of ‘;
(iii) the relative difference between the height of
‘ and the height of j.
Let H‘ denote the height of layer ‘, and J‘ the

set of items already packed in ‘. Let P ðj; ‘; pÞ be
the perimeter of the base of j which will touch
the edges of the floor of ‘ or the edges of items in
J‘ if j is packed in layer ‘ in position p. The score
is then

Sðj; ‘; pÞ ¼ q
Pðj; ‘; pÞ
2wj þ 2dj

þ l

P
k2J‘ wkdk
WD

� ð1� q � lÞ jH‘ � hjj
H‘

; ð1Þ

where q and l are prefixed real values satisfying
q; l 2 ½0; 1	 and q þ l6 1. We set Sðj; ‘; pÞ ¼ 0 if
packing j in position p on the floor of ‘ would
cause some portion of j to overlap another item or
to go outside the bounds of the floor.
The next item, j, is packed, in order of prefer-

ence:
(1) in an initialized layer having height no less
than hj (if any), in the maximum score position;
(2) in an initialized layer having height less than
hj (if any), in the maximum score position (by
appropriately increasing the layer’s height);
(3) in a new layer, with its back left corner in the
back left corner of the floor.

More precisely, after the initial sorting, clus-
tering and re-numbering, Phase 1 consists of exe-
cuting the following:

Let H1; . . . ;Hg be the heights of the layers pro-
duced by procedure PACK. A finite bin packing
solution is obtained by solving a 1BP instance
defined by values Hk (k ¼ 1; . . . ; g) and capacity H.
We used exact algorithm MTP by Martello and
Toth [9], with a limit of 50 backtrackings. Due to
the limited number of resulting layers, this limit
experimentally turned out to almost always pro-
duce, for the instances we used, the optimal 1BP
solutions. Higher values, which could be appro-
priate for larger instances, would however affect
the computing times of the Tabu Search algorithm

procedure PACK:
for j :¼ 1 to n do

S
 :¼ 0;
for each normal position p in an
initialized layer ‘ satisfying H‘ P hj
do

compute Sðj; ‘; pÞ;
S
 :¼ maxfS
; Sðj; ‘; pÞg

end for;
if S
 > 0 then pack item j in the layer
and position corresponding to S


else

for each normal position p in an
initialized layer ‘ satisfying
H‘ < hj do

compute Sðj; ‘; pÞ;
S
 :¼ maxfS
; Sðj; ‘; pÞg

end for;
if S
 > 0 then

pack item j in the layer and
position corresponding to
S
, and set the layer height
to hj

else

initialize a new layer with
height hj, and pack item j
into it

end for

end.
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described in the following section, in which algo-
rithm HA is executed at each move.

2.2. Phase 2

The items are directly sorted and re-numbered
by non-increasing wjdj value. The g layers pro-
duced by Phase 1 are initialized, with heights
H1; . . . ;Hg, but with no item packed into them.
Procedure PACK of Section 2.1 is then executed,
and a new finite bin solution is obtained as at the
end of Phase 1, by obviously disregarding empty
layers (if any). The best of the two solutions is
finally selected.

Example 1. We illustrate algorithm HA with a
numerical example. Let n ¼ 5, W ¼ H ¼ D ¼ 10,
w1 ¼ 4; h1 ¼ d1 ¼ 10, w2 ¼ 5; h2 ¼ 9; d2 ¼ 6, w3 ¼
6; h3 ¼ 7; d3 ¼ 6, w4 ¼ h4 ¼ d4 ¼ 5, w5 ¼ 6; h5 ¼
1; d5 ¼ 10. The items are already sorted by non-
increasing height. By assuming b ¼ 1, each item
defines a cluster. By using q ¼ 0:3 and l ¼ 0:7, we
obtain the packing into layers produced by PACK
in Phase 1 as depicted in Fig. 1(a).

It is easy to see that the layers of Fig. 1(a)
produce, in Phase 2, a finite bin solution using 3
bins. In Phase 3 the new order of the items, sorted
by non-increasing wjdj value, is: 5, 1, 3, 2, 4. The
layers produced by PACK by using q ¼ 0:2 and

l ¼ 0:3 are depicted in Fig. 1(b). The third (empty)
layer is disregarded and the new finite bin solution
uses 2 bins.
The two steps of HA can also be executed on

the two instances we can obtain by interchanging
widths, heights and depths, i.e., by creating layers
whose floors are, respectively, on the height–depth
plane, or on the height–width plane. In this way we
obtain three different solutions, among which to
select the best one (in terms of the number of used
bins).

3. A Tabu Search approach

Lodi et al. [7] developed a unified Tabu Search
framework for two-dimensional packing prob-
lems, by defining a search scheme and a neigh-
borhood which are independent of the specific
problem to be solved. In practice, the approach
can be used for any variant of 2BP, by just
changing a subordinate inner heuristic. Due to this
characteristic, it was not difficult to adapt this
framework to 3BP as well. The main modifications
needed were the use of algorithm HA of Section 2
as inner heuristic, the extension of the so-called
‘filling function’ (see [7]) to the three-dimensional
case, the way forbidden moves are stored in the
tabu lists, and the diversification action. The re-
sulting algorithm is briefly described hereafter.

Fig. 1. Example for algorithm HA. (a) Layers obtained in Phase 1. (b) Layers obtained in Phase 3.
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Table 1

Results for n < 50; Digital Alpha 533 MHz; 15 CPU seconds time limit for Tabu Search; average values over 10 instances

n Class H1/V H2/V HA/V TS/V BB/V

10 1 1.14 1.00 1.08 1.00 1.00

2 1.13 1.00 1.00 1.00 1.00

3 1.03 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00 1.00

5 1.15 1.00 1.00 1.00 1.00

6 1.13 1.00 1.05 1.05 1.00

7 1.33 1.05 1.05 1.05 1.00

8 1.22 1.00 1.10 1.05 1.00

Average 1.14 1.01 1.04 1.02 1.00

15 1 1.07 1.03 1.00 1.00 1.00

2 1.15 1.00 1.05 1.02 1.00

3 1.09 1.00 1.02 1.02 1.00

4 1.02 1.01 1.00 1.00 1.00

5 1.15 1.07 1.03 1.00 1.00

6 1.13 1.02 1.00 1.00 1.00

7 1.47 1.10 1.18 1.18 1.00

8 1.22 1.07 1.05 1.05 1.00

Average 1.16 1.04 1.04 1.03 1.00

20 1 1.12 1.03 1.00 1.00 1.00

2 1.04 1.00 1.02 1.00 1.00

3 1.10 1.04 1.02 1.00 1.00

4 1.02 1.00 1.00 1.00 1.00

5 1.25 1.05 1.08 1.08 1.00

6 1.12 1.03 1.00 1.00 1.00

7 1.35 1.05 1.08 1.02 1.00

8 1.09 1.00 1.00 1.00 1.00

Average 1.14 1.03 1.02 1.01 1.00

25 1 1.13 1.02 1.03 1.00 1.00

2 1.17 1.05 1.06 1.03 1.00

3 1.09 1.05 1.03 1.00 1.00

4 1.02 1.01 1.00 1.00 1.00

5 1.21 1.06 1.05 1.03 1.00

6 1.15 1.04 1.02 1.00 1.00

7 1.46 1.10 1.07 1.07 1.07

8 1.27 1.06 1.04 1.02 1.00

Average 1.19 1.05 1.04 1.02 1.01

30 1 1.12 1.03 1.01 1.00 1.00

2 1.17 1.05 1.04 1.01 1.00

3 1.10 1.01 1.03 1.02 1.00

4 1.01 1.01 1.00 1.00 1.00

5 1.19 1.04 1.02 1.02 1.00

6 1.18 1.04 1.03 1.00 1.00

7 1.56 1.18 1.20 1.09 1.13

8 1.21 1.05 1.04 1.00 1.00

Average 1.19 1.05 1.05 1.02 1.02

35 1 1.20 1.09 1.07 1.01 1.00

2 1.11 1.03 1.03 1.00 1.00

3 1.14 1.03 1.03 1.00 1.00

4 1.01 1.01 1.00 1.00 1.00

5 1.24 1.09 1.08 1.02 1.09
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The first incumbent solution is obtained by ex-
ecuting algorithm HA. Let z be the number of
bins used in the incumbent solution. The search is
started by generating an initial (naive) current
solution which packs each item into a separate bin.
Let zc be the number of bins used in the current
solution.
A move modifies the current solution by chang-

ing the packing of a subset S of items, trying to
empty a specified target bin. Let Si be the set of items
currently packed into bin i: the target bin t is the one
minimizing, over all bins i, the filling function

uðSiÞ ¼ a

P
j2Si wjhjdj
WHD

� jSij
n

ð2Þ

(a is a pre-specified positive weight), which gives a
measure of the easiness of emptying the bin.
Once the target bin has been selected, subset S

is defined so as to include one item, j, from the
target bin and the current contents of k other bins.
The new packing for S is obtained by executing
algorithm HA on S. The value of parameter k,
which defines the size and the structure of the
current neighborhood, is automatically updated
during the search. Initially, k is set to 1.

If the move packs the items of S into k (or less)
bins, i.e., item j has been removed from the target
bin, a new item is selected, a new set S is defined
accordingly, and a new move is performed. Other-
wise S is changed by selecting a different set of k
bins, or a different item from the target bin (when
all possible configurations of k bins have been
attempted for the current j). Whenever a move
produces a solution using less than z bins, the in-
cumbent solution is updated.
We halt the current search when one of the two

situations occurs: (i) all items j from the target bin
and all possible configurations of k bins have been
attempted without finding a feasible move; (ii) ‘
moves have been attempted without improving the
incumbent solution (where ‘ is a prefixed para-
meter). In both cases, if k < kmax (where kmax is a
prefixed upper limit) then the value of k is in-
creased by one and the new (enlarged) neighbor-
hood is explored; otherwise a diversification action
is performed.
There are a tabu list and a tabu tenure sk for

each value of k. A tabu list stores, for each for-
bidden move, the sum of the filling function values
of the k þ 1 involved bins.

Table 1 (continued)

n Class H1/V H2/V HA/V TS/V BB/V

6 1.21 1.10 1.07 1.05 1.00

7 1.49 1.26 1.20 1.13 1.19

8 1.35 1.20 1.09 1.08 1.16

Average 1.22 1.10 1.07 1.04 1.05

40 1 1.17 1.09 1.07 1.03 1.01

2 1.15 1.07 1.07 1.03 1.03

3 1.13 1.08 1.04 1.03 1.02

4 1.02 1.00 1.00 1.00 1.00

5 1.37 1.24 1.17 1.13 1.19

6 1.17 1.10 1.07 1.03 1.00

7 1.60 1.30 1.26 1.17 1.29

8 1.30 1.17 1.10 1.06 1.02

Average 1.24 1.13 1.10 1.06 1.07

45 1 1.17 1.11 1.07 1.03 1.06

2 1.16 1.07 1.07 1.04 1.04

3 1.17 1.10 1.10 1.05 1.05

4 1.02 1.00 1.00 1.00 1.00

5 1.24 1.13 1.06 1.04 1.09

6 1.18 1.12 1.08 1.02 1.00

7 1.69 1.45 1.37 1.32 1.42

8 1.32 1.18 1.13 1.06 1.06

Average 1.24 1.15 1.11 1.07 1.09
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Table 2

Results for nP 50; Digital Alpha 533 MHz; 60 CPU seconds time limit for Tabu Search; average values over 10 instances

n Class H1/V H2/V HA/V TS/V BB/V

50 1 1.19 1.14 1.08 1.04 1.06

2 1.25 1.14 1.11 1.08 1.08

3 1.20 1.14 1.11 1.05 1.07

4 1.02 1.01 1.00 1.00 1.00

5 1.34 1.28 1.13 1.11 1.24

6 1.20 1.12 1.07 1.01 1.00

7 1.49 1.32 1.27 1.17 1.28

8 1.40 1.29 1.21 1.13 1.24

Average 1.26 1.18 1.12 1.07 1.12

60 1 1.26 1.15 1.14 1.08 1.10

2 1.21 1.15 1.11 1.07 1.09

3 1.22 1.14 1.12 1.08 1.09

4 1.02 1.02 1.01 1.01 1.01

5 1.45 1.31 1.25 1.16 1.31

6 1.15 1.13 1.06 1.02 1.00

7 1.56 1.41 1.28 1.22 1.38

8 1.25 1.17 1.10 1.04 1.09

Average 1.26 1.18 1.13 1.08 1.13

70 1 1.24 1.15 1.13 1.09 1.11

2 1.22 1.15 1.11 1.07 1.09

3 1.22 1.16 1.13 1.08 1.11

4 1.05 1.02 1.02 1.02 1.02

5 1.30 1.27 1.16 1.11 1.25

6 1.22 1.20 1.11 1.05 1.05

7 1.65 1.47 1.33 1.25 1.46

8 1.36 1.27 1.15 1.09 1.17

Average 1.28 1.21 1.14 1.09 1.16

80 1 1.19 1.17 1.12 1.08 1.09

2 1.19 1.15 1.12 1.08 1.10

3 1.17 1.13 1.09 1.06 1.09

4 1.03 1.03 1.02 1.02 1.02

5 1.36 1.33 1.18 1.12 1.33

6 1.20 1.20 1.11 1.06 1.08

7 1.45 1.39 1.24 1.18 1.38

8 1.36 1.34 1.19 1.15 1.25

Average 1.24 1.22 1.13 1.09 1.17

90 1 1.18 1.14 1.10 1.07 1.09

2 1.18 1.14 1.11 1.07 1.09

3 1.17 1.15 1.11 1.07 1.09

4 1.04 1.04 1.03 1.03 1.03

5 1.32 1.34 1.20 1.14 1.30

6 1.15 1.18 1.06 1.03 1.02

7 1.49 1.46 1.29 1.19 1.45

8 1.35 1.32 1.20 1.15 1.24

Average 1.24 1.22 1.14 1.09 1.16

100 1 1.19 1.14 1.10 1.07 1.09

2 1.19 1.16 1.12 1.07 1.10

3 1.17 1.14 1.10 1.07 1.10

4 1.05 1.04 1.02 1.02 1.03

5 1.37 1.40 1.22 1.17 1.36
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Two different diversification actions are per-
formed alternatively. The first one (‘soft’ diversifi-
cation) simply consists in selecting as target bin the
one having the second smallest filling function value
(see (2)). The second one (‘hard’ diversification)
consists in re-packing into separate bins the items
currently packed in the bzc=2c bins with the small-
est uðSiÞ value. In both cases, all tabu lists are reset
to empty, and the search is restarted with k ¼ 1.
Preliminary computational experiments allowed

to set the parameters needed by the Tabu Search
to the following values: a ¼ 1:5, kmax ¼ 3, sk ¼ 20
for all k, and ‘ ¼ 100� 25ðk � 1Þ. (More details
on these experiments can be found in Lodi [5].)

4. Computational experiments

The algorithms of the two previous sections
were coded in FORTRAN 77 and run on a Digital
Alpha 533 MHz. For algorithm HA of Section 2,
the parameters were experimentally set to the fol-
lowing values: b ¼ 0:75; q ¼ 0:3 for Phase 1 and
q ¼ 0:2 for Phase 3; l ¼ 0:7 for Phase 1 and l ¼ 0:3
for Phase 3. The algorithms were tested on eight
classes of instances proposed by Martello et al. [8].
(The instance generator is available at http://
www.diku.dk/�pisinger/codes.html.) The same
classes have been used by Færø et al. [4] for testing
their Guided Local Search heuristic (GLS) for 3BP.
For Classes 1–5, the bin size is W ¼ H ¼ D ¼

100 and the following five types of items are con-
sidered:

type 1: wj uniformly random in ½1; 1
2
W 	, hj in

½2
3
H ;H 	, dj in ½2

3
D;D	;

type 2: wj uniformly random in ½2
3
W ;W 	, hj in

½1; 1
2
H 	, dj in ½2

3
D;D	;

type 3: wj uniformly random in ½2
3
W ;W 	, hj in

½2
3
H ;H 	, dj in ½1; 1

2
D	;

type 4: wj uniformly random in ½1
2
W ;W 	, hj in

½1
2
H ;H 	, dj in ½1

2
D;D	;

type 5: wj uniformly random in ½1; 1
2
W 	, hj in

½1; 1
2
H 	, dj in ½1; 1

2
D	;

for Class k (k ¼ 1; . . . ; 5), each item is of type k
with probability 60%, and of the other four types
with probability 10% each. Classes 6–8 are as
follows:

Class 6: bin size W ¼ H ¼ D ¼ 10; wj; hj; dj uni-
formly random in ½1; 10	;
Class 7: bin size W ¼ H ¼ D ¼ 40; wj; hj; dj uni-
formly random in ½1; 35	;
Class 8: bin size W ¼ H ¼ D ¼ 100; wj; hj; dj
uniformly random in ½1; 100	.

In Tables 1–3, the proposed algorithms are
compared with the algorithms proposed by Mar-
tello et al. [8], namely heuristic algorithms H1 and
H2 and exact algorithm BB. For each class, 140
instances were solved, 10 for each value of
n 2 f10; 15; 20; 25; 30; 35; 40; 45; 50; 60; 70; 80; 90;
100g, yielding a total of 1120 instances. In Tables 1
and 2, we report, for each algorithm, the aver-
age ratio (solution value)/V, where V is the opti-
mal solution value if known, or the highest lower
bound value otherwise. V was computed by run-
ning the branch-and-bound algorithm of [8] with a
time limit of 2000 CPU seconds on a HP PA9000/
782 (200 MHz). The Tabu Search algorithm, TS,
was run with a time limit of 15 CPU seconds for
instances with n < 50, and with a time limit of 60
CPU seconds for instances with nP 50. The com-
puting times of algorithm HA, as well as those of
H1 and H2, were negligible.
Although the proposed algorithms can only

obtain solutions composed by layers (thus solving
a more constrained packing problem), Tables 1
and 2 show a satisfactory behavior of HA and TS

Table 2 (continued)

n Class H1/V H2/V HA/V TS/V BB/V

6 1.25 1.26 1.14 1.09 1.10

7 1.46 1.41 1.23 1.16 1.41

8 1.23 1.25 1.14 1.10 1.16

Average 1.24 1.22 1.13 1.09 1.17
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with respect to H1 and H2. In particular, HA
dominates H1 on all instances, and dominates H2
for n > 30. The Tabu Search approach was effec-
tive in improving the solutions found by HA: with
few exceptions for very small instances, it domi-
nates all other heuristic algorithms. Furthermore,
for sufficiently large n values, it produced solutions
consistently better than the best incumbent solu-
tions obtained by branch-and-boundwithin amuch
larger time limit.
The good behavior of TS is further illustrated in

Table 3, where we report aggregated results com-
paring it with the branch-and-bound algorithm,
BB. For each value of n, we give the number of
instances (over 80) where TS: (i) was at least as
good as BB; (ii) was strictly better than BB, and
(iii) obtained a proven optimal solution.
Finally, in Table 4, we compare our TS approach

with the Guided Local Search heuristic, GLS,
recently proposed by Færø et al. [4]. This algorithm
is not restricted to layer packings. We ran TS on the
same instances considered in [4], i.e., Classes 1–8
with n 2 f50; 100; 150; 200g. The entries give, for
each algorithm and for different time limits, the
average solution value (number of bins) over 10
instances. The values in columns GLS are taken
from [4], where, for Classes 2 and 3, the authors say
that the results were very similar to those of Class 1
(without explicitly reporting them). The experi-
ments of Færø et al. [4] were performed on aDigital
workstation 500 a.u. 500 MHz, similar in speed to
the Digital Alpha 533 MHz we used. The results
show a satisfactory behavior of both approaches.
In one third of the cases, they produced exactly the
same average solution values. For Classes 1 (hence,
presumably, 2 and 3 as well) and 4, TS is gener-
ally better than GLS. The reverse holds for Classes
5, 7 and 8, while equivalent performances can be
observed for Class 6. It turns out that the two
approaches complement each other well.
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