Three-dimensional packings with rotations*

F. K. Miyazawa' and Y. Wakabayashi*

Abstract

We present approximation algorithmsfor the three-dimensional strip packing problem, and the three-dimensional
bin packing problem. We consider orthogonal packings where ninety-degree rotations are allowed. The algo-
rithms we show for these problems have asymptotic performance bounds 2.64, and 4.89, respectively. These
algorithms are for the more general case in which the bounded dimensions of the bin given in the input are not
necessarily equa (that is, we consider bins for which the length, the width and the height are not necessarily
equal). Moreover, we show that these problems —in the general version— are as hard to approximate as the
corresponding oriented version.

1 Introduction

We focus on orthogonal packing problems where ninety-degree rotations are allowed. These problems have many
real-world applications [6, 19]: job scheduling, container loading, cutting of hardboard, glass, foam, etc.

We present approximation algorithms for the 3-dimensional versions of the strip packing and the bin packing
problems. In the d-dimensional version of both problems, d > 1, theinput consists of alist of d-dimensional items
(not necessarily of equal sizes) and a d-dimensiona bin B. In the d-dimensional strip packing problem (dSP),
defined only for d > 2, one of the dimensions of the bin B, say height, is unlimited, and the goal isto pack the list
of itemsinto B so as to minimize the height of the packing. In the d-dimensional bin packing problem (dBP), the
dimensions of the bin B are limited, and the goal isto pack the list of itemsinto a minimum number of bins.

These problems and others of this nature have been more investigated in the version in which the packing is
required to be oriented. In this version, the items and the bins are given with an orientation with respect to a
coordinate system, and the items must be packed into the bins in this given orientation. In this paper, we consider
packings that allow orthogonal rotations (that is, the items to be packed may be rotated by ninety degrees around
any of the axes); to distinguish them we may refer to them as r-packings or packings with rotation (instead of
saying non-oriented orthogonal packing). We also denote the corresponding problems by dSP (d-dimensional strip
packing problem with rotation) and dBF (d-dimensional bin packing problem with rotation).

We present approximation algorithms with asymptotic performance bounds 2.64 and 4.89 for the problems 3SP
and 3BP?", respectively.

Approximation algorithms for the oriented versions of these packing problems have been extensively considered.
The most studied case is the 1-dimensional bin packing problem (1BP), for which the work of Johnson [15] in the
early 1970s pioneered the approach of designing efficient approximation algorithms with worst-case performance
guarantee for packing problems. Since 1BPis NP-hard and it is a particular case of al problems considered in this

*This research was partially supported by CNPq (Proc. 478470/06-1, 472504/07-0, 306624/07—-9, 305702/07—6 and 490333/04—4) and
ProNEx—FAPESP/CNPq (Proc. 03/09925-5).

TInstituto de Computaco — Universidade Estadual de Campinas — Caixa Postal 6176 — 13084-971 — Campinas, SP — Brazil —
fkm@ c. uni canp. br.

fInstituto de Matemética e Estatistica— Universidade de S3o Paulo — Rua do MatZo, 1010 — 05508-090 — S&o Paulo, SP — Brazil

— yW@ ne. usp. br.

paper, it follows that each problem considered here is NP-hard. Moreover, 1BP cannot be approximated —in the
absolute sense— within 3/2 — ¢; thus, this negative result aso holds for the problems considered here.

In what follows we only mention some previous results closely related to the problems we focus in this paper.
For the problem 2SP, Kenyon and Rémila [16] obtained an asymptotic polynomial time approximation scheme
(APTAS). For the problem 2BP, Chung, Garey and Johnson [5] proved that the algorithm HFE®) (Hybrid First
Fit) has asymptotic performance bound 2.125. In 2001, Caprara [4] proved that this algorithm has asymptotic
performance bound 2.077; and also presented an algorithm with asymptotic performance bound 1.691, the best
bound known for the problem 2BP. Recently, Bansal, Correa, Kenyon and Sviridenko [1] proved that there is
no APTAS for 2BP, unless P = NP. They also showed an APTAS for the problem dBP when the items and
the bins are d-dimensional cubes. For the problem 3SP, in 1997 we presented a 2.67-approximation [20], then
in 2006 Jansen and Solis-Oba [13] obtained a (2 + ¢)-approximation, and recently Bansal et a. [2] obtained a
1.69-approximation. For the problem 3BP, Li and Cheng [17] and Csirik and van Vliet [9] designed algorithms
with asymptotic performance bound 4.84. Their algorithms generalize to the problem dBP, and achieve asymptotic
performance bound close to 1.691°.

The approximation bounds of some of the algorithms designed for the oriented version may aso hold when
these algorithms are used for the corresponding r-packing problem. This happens when the proofs are based only
on area arguments. Except for these cases, not many results are known on approximation algorithms for r-packing
problems. Theinterest on these problems is more recent and has increased lately.

For the problem 2SP", the algorithms NFDH and BLDW have asymptotic performance bound 2 (see Coffman,
Garey and Johnson [6]). In [24] we presented an algorithm with asymptotic performance bound 1.613; then Epstein
and van Stee [11] obtained an agorithm with asymptotic bound 1.5, and Jansen and van Stee [14] presented an
APTAS.

We considered a specia case of the problem 3SP*, denoted by 3SP#, in which the boxes can be rotated around
the z-axis, but cannot be laid down. For this problem we obtained an algorithm with asymptotic performance bound
2.67 (see [21]). We also showed an agorithm with bound 2.55 for the special case of 3SP* in which the bin has
square bottom, and also for amore specialized version in which the boxes have square bottom (see [24] for aresult
when the bin does not have a square bottom). To our knowledge, [21] is the first paper to present approximation
algorithms for r-packing problems where rotations are exploited in a non-trivial way. It is easy to see that any
algorithm for 3SP* leads to an algorithm to 2BP* with the same bound. Therefore, the algorithms presented in
[21] aso lead to agorithms for the problem 2BP*. For the specia case in which the bins are squares, Epstein [10]
presented an on-line algorithm with asymptotic bound 2.45. Using the APTAS presented by Jansen and van Stee
[14] for the problem 2SP", it is possible to obtain a (2 + ¢)-asymptotic approximation algorithm for 2BF, which
is the best result known for this problem. Epstein and van Stee [11] obtained an algorithm with asymptotic bound
2.25 for the special case of 3SP* where the bin has square bottom. They also observed that this algorithm can be
used to obtain an algorithm with asymptotic performance bound 4.5 for the special case when the bins are cubes.

Using the fact that there isno APTASfor 2BP, we may easily conclude that there is no APTAS for the problem
3SP or 3BP, unlessP = NP.

For a survey on approximation algorithms for packing problems, we refer the reader to [6, 7].

This paper is organized as follows. In Section 2, we define the problems, give some basic definitions and state
some results. Sections 3 and 4 are devoted to problems 3SP* and 3BP*, respectively. In Section 5 we present some
concluding remarks.

An extended abstract corresponding to an early version of this paper appeared in [24], presenting results for
the two- and three-dimensional cases. In that paper, we only mentioned the bounds we have obtained, without any
algorithm or proof for the three-dimensional case. In fact, in the present paper, for the 3SP problem we show an
algorithm with performance bound 2.64, which is better than the bound 2.76, mentioned in that paper.

2 Preiminaries

In this section, we first define the packing problems that appear in this paper, then give some basic definitions,
establish the notation, and mention some known results that we use. We also discuss some relations (reductions)
between algorithms for the oriented version and the version with rotations. Since we use existing algorithms for
subproblems of the 3SP* and 3BP*, we also define these problems.

In the bin packing problem, 1BP, we are given alist of items L = (s, ..., s,,), and bins B of capacity a, where
0 < s; < a, and we are asked to find a packing of L into a minimum number of bins B.

The two-dimensional strip packing problem with rotation, 2SF, is the following: given a list of rectangles
L=(r1,...,rm), wherer; = (x;,y;), and abin B = (a, o), find an r-packing of the rectangles of L into B that
minimizes the size of the packing in the unlimited direction of B.

In the two-dimensional bin packing problemwith rotation, 2BP, weare given alist of rectangles L = (ry, ..., 7,),
where r; = (z;,y;), and two-dimensiona bins B = (a, b), and we are asked to find an r-packing of the rectangles
of L into aminimum number of bins B.

The three-dimensional strip packing problem with rotation, 3SP, is defined as follows: given alist of boxes
L= (ey,...,ey),Wheree; = (z;,v;,2;), and abin B = (a, b, c0), find an r-packing of the boxes of L into B, that
minimizes the size of the packing in the unlimited direction of B.

In the three-dimensional bin packing problemwith rotation, 3BF, weare given alist of boxes L. = (ey, ..., e,),
where e; = (z;,y;, 2;), and three-dimensional bins B = (a, b, ¢), and we are asked to find an r-packing of the boxes
of L into aminimum number of bins B.

We denote by 2SP"(a), 2BP*(a, b), 3SP*(a, b), and 3BP"(a, b, ¢) the corresponding problems versions with the
bin sizes defined by values a, b and c. If P isapacking for the (three-dimensional) strip packing problem, we denote
by H(P) the height of packing P, and if P isapacking for the (three-dimensional) bin packing problem, we denote
by #(P) the number of binsused in P.

2.1 Definitions and Notation

In all problems considered in this paper, the given list L of boxes must be packed orthogonally into bins B (3D strip
or 3D hins) in such away that no two items overlap.

For al algorithms we assume that every item e in the input list L is given in a feasible orientation, that is, in
an orientation that allows it to be packed into B without the need of any rotation (there is no loss of generality in
assuming this, as the items can be rotated previously if needed). Moreover, we consider that the items have each of
its dimensions not greater than a constant Z.

To refer to the packings, we consider the Euclidean space R?, with the zyz coordinate system. An item e in
L has its dimensions defined as z(e), y(e) and z(e), also called its length, width and height, respectively. Each of
these dimensions is the measure in the corresponding axis of the xyz system. For the one- and the two-dimensional
cases, some of these values are not defined.

If e is arectangle then we denote by S(e) its area. If e is abox then the bottom area of e is the area of the
rectangle (z(e), y(e)), and V (e) denotes the volume of e. Given afunction f : C — R and asubset C' C C, we
denote by f(C’) thesum }_ . f(e).

Although alist of itemsis given as an ordered n-tuple, when the order of the itemsisirrelevant we consider the
corresponding list as a set. Therefore, if L isalist of items, we refer to the total area, respectively volume, of the
itemsin L as S(L), respectively V(L).

If Ly, Lo, ..., L arelists, where L; = (e}, €2, ..., el'"), theconcatenation of theselists, denoted by Ly || Lo . . . || L,
isthelist (el,....elt ed, ... eh%, ... ef, ... ep%).

The following is a convenient notation to define and restrict the input list of items. We assume that the dimen-

sions of theinput bin B is (a, b, ¢).

X[p, q] {e:
VIp,ql = Ae:
Zp,q] = {e:

C™ [p1,q1 ; p2,q2

C* [p1,q1; P2, q2

pra<uwz(e) <q-a},
p-b<y(e)§q'b},
pre<ze)<q-cl,

X[plaql my[l)quQ]v

Zp1,q1] N X[pa2, 2],

]]

CY* [p1,q1 ; D2, q2] Yp1, 1] N Z[p2, 2],
]]
]]

C™* [p1,q1 5 p2,4q2 5 P3,G3 X[p1, 1] N Yp2, g2) N Z[ps, g3],

1 1 1
Cm, = (" |:Oa — Oa — 07 _:|a
m m m
e = erfotio],
m m
Cpq = [0,1/p| N Y[0,1/q]
Cpgr = X[0,1/pNY[0,1/q] N Z[0,1/r]
1 1 1 1
— (C*Y —.1 Q= C*Y —
C |: ’ 2) :|a 2 C |:Oa 2) 27 :|a
1 1 1 1
— | = © =g = -
C |: 1 0 :| 4 C |:0; 2 ’ Oa 2:|a

If 7 isaset of items, then we say that aniteme in L isof type 7 if € € T for some permutation € of e. If P is
apacking, we denote by £(P) the set of boxes packed in P.

If Aisan agorithm (for one of the packing problems), and L isalist of itemsto be packed, then A(L) denotes
the size of the packing generated by algorithm .4 when applied to list L, and OPT (L) denotes the size of an optimal
packing of L. The size can be the height of the packing or the number of bins used in the packing, depending on
the problem we are considering. Although OPT will be used for distinct problems, its meaning will be clear from
the context. We say that an algorithm .4 has asymptotic performance bound « if there exists a constant g such that
A(L) < aOPT(L) + g, for al input list L.

2.2 Relationsbetween algorithmsfor oriented packings and r-packings

One way to solve r-packing problemsisto adapt algorithms designed for the oriented case. In [21] we mention that,
for the problem 3SP?, a simple algorithm that first rotates all items so as to have them in afeasible orientation and
applies an algorithm for 3SP must have an asymptotic bound at least 3. It can be shown, using the same strategy,
that no algorithm for 2SP", designed as we described above, can have asymptotic performance bound smaller than
2. Similar results also hold for the problems 2BP* and 3BP*: no algorithm with asymptotic performance bound
smaller than 3 can be obtained as described above (for more details see [21]).

Most of the results concerning approximation results do not consider rotations. In the early 1980s, Coffman,
Garey and Johnson [6] discussing the case where ninety-degree rotations are allowed, mentioned that “ no algorithm

4

has been found (for the problem 2BP) that attains improved guarantees by actually using such rotations itself”
Chung, Garey and Johnson [5] also discussed this matter and raised the question about the possibility of obtaining
algorithms with better worst-case bounds. For other papers that raise questions about rotations the reader may refer
to[8, 16].

We can show that when scaling does not affect the problem, for any of the general packing problems considered,
the version allowing rotations is as hard to approximate as the oriented version. More precisely, we can show the
following result.

Theorem 2.1 Let PROB" be one of the problems defined previously, for which orthogonal rotations around some
of the axes x or y or z (possibly several axes) are allowed; and let PROB be a variant of PROB, obtained by
fixing the orientation of the packing with respect to some axis. Let o and 3 be constants and .A" an algorithm
for PROB" such that A"(L) < o OPT(L) + " for any input list L of PROB'. Then, there is an algorithm A for
PROB such that the following holds:

A(L) < aOPT/(L) + for anyinput list L of PROB,

where OPT’(L) isthe size of an optimum packing of L (w.r.t. PROB) and /3 is a constant. Moreover, the reduction
is polynomial, if we consider a convenient representation for the instance.

Proof. Consider the problem 2BP" and an instance composed by an input list of rectangles L and bins of size
B = (a,b). Suppose that z(e) < a and y(e) < b, for eachiteme € L. Let A" be an algorithm for 2BP* such
that A"(L) < «OPT(L) + ". Consider the following agorithm A’ for the problem 2BP. First take a scaling of
Bto B’ = (d/,b) and L to L’ in the same proportion, in such away that min{xz(e) : e € '} > b. In this case,
all rectangles of L' can only be packed in the original orientation. At this point, we apply algorithm A" to pack L’
into the box B’, obtaining a packing P'. At last, reescale P’ to the original sizes, obtaining a packing, say P (of the
origina list L into B). Itisclear that A(L) < - OPT'(L) + 3, where OPT’(L) isthe size of an optimum packing
for the problem 2BP and 5 is the additive constant obtained in the original scale.

For the three-dimensional case, we can first apply the strategy so that no box can be rotated around the z-axis.
Then, we apply the same strategy scaling the height of all boxes and binsin such way that no item can be laid down.
Denote the final input list by L and the final bins by B”. Obtain a packing P” applying the algorithm .4’ and then
rescale the packing P” to theinitial sizes.

We can apply the same strategy when rotations are alowed in only some axes, and design an algorithm A with
the desired property. 0

Using the fact that there is no APTAS for the problems 2BP (see [3]) we have the following negative result.
Corollary 2.2 Thereisno APTASfor the problems 2BP", 3SP* and 3BP”, unless P=NP.

One-Dimensional Bin Packing Problem: Some algorithms we shall describe use one-dimensiona bin packing
problem algorithms as subroutines. This section is devoted to these agorithms and related results (see Coffman,
Garey and Johnson [7]). Many algorithms have been designed for 1BP. In what follows we describe the following:
NF (Next Fit), FF (First Fit) and FFD (First Fit Decreasing).

The algorithm NF can be described as follows. Given alist of items L, it packs the items in the order given by
L. Thefirst item is packed into a bin which becomes the current bin; then as long as there are items to be packed,
the next item is tested. If possible, it is packed into the current bin; if it does not fit in the current bin, then it is
packed into a new bin, which becomes the current bin.

The agorithm FF also packs the items in the order given by L. It tries to pack each new item into one of the
previous bins, considering the order they were generated. If it is not possible to pack an item in any of the previous
bins, the algorithm packs it into anew bin.

The agorithm FFD first sorts the items of L in decreasing order of their length, and then applies the algorithm
FF.
We also use the APTAS designed by Fernandez de la Vega and Lueker [12, 7], which we denote by FL..

Theorem 2.3 [12, 7] For any rational € > 0, there exists a polynomial-time algorithm F1, for the one-dimensional
bin packing problem such that, for any input list L, FI,.(L) < (1 4 ¢) OPT(L) + 1.

Two-dimensional Strip Packing Problem: Some of the algorithms we use as subroutine, are for the two-dimensional
strip packing problem with rotation (2SP"). For the problem 2SP, Coffman, Garey, Johnson and Tarjan [8] presented
the algorithms NFDH(®) (Next Fit Decreasing Height) and FFDH®) (First Fit Decreasing Height) and proved that
their asymptotic performance bounds are 2 and 1.7, respectively. The algorithm NFDH®) first sorts the input list
L in decreasing order of height, then packs the rectangles side by side generating levels. When an item cannot be
packed in the current level, it is packed in a new level above the previous one. The algorithm FFDH®) also packs
theitemsin decreasing order of height. Each item is packed in the first level with sufficiently space to accommodate
it. If thereisno such level, the item is packed in anew level above the previous one.

Recently, Jansen and van Stee [14] presented an asymptotic approximation scheme for problems in which all
items can be packed in both ways. We note that the scheme presented can also be adapted to the case in which some
of the items may not be rotated.

Theorem 2.4 [14]. For any rational ¢ > 0, there exists a polynomial-time algorithm JvS for 2SP"(«a) such that
JVS.(L) < (1 +¢€) OPT(L) + O(Z/¢€?), for any list L of rectangles with dimensions at most Z.

3 Three-Dimensional Strip Packing Problem

In this section, we present an algorithm for 3SF*, called TRI}, ., with asymptotic performance bound close to 2.64.
We observe that we consider the more general setting in which the bin may not have square bottom.

This algorithm uses the critical set combination strategy used in [20, 21]. The idea is to combine item types
which do not lead to packings with good space filling, if considered independently.

In Section 3.1 we present some subroutines used by the main algorithm of this section. In sections 3.2-3.4 we
present the ideas of the main algorithm and how they guide us to obtain the main algorithm. In Section 3.2 we show
afirst idea to obtain an approximation algorithm with asymptotic factor 3.25 and the points we need to improve
to obtain a better bound. In Section 3.3, we present a first combination step to obtain an improved algorithm with
bound 2.6875. In Section 3.4, we consider another combination step to obtain the final bound of 2.64. The use of
the combination of critical setsisthe key ideaof algorithm TRI, .. In Section 3.5 we present the main algorithm in
details.

3.1 Subroutines

The agorithm TRI, . uses many algorithms as subroutines, which we describe in what follows.
First we describe the algorithm NFDH (Next Fit Decreasing Height) presented by Li and Cheng [18]. The
agorithm has two variants: NFDH* and NFDHY. The notation NFDH is used to refer to any of these variants.

Algorithm NFDH: The algorithm NFDH? first sorts the boxes of L in decreasing order of their height, say L =
(e1,e2,...,e,). Thefirstbox e; ispacked inthe position (0, 0, 0), the next oneis packed in the position (z(e), 0,0)

and so on, side by side, until abox is found that does not fit in this layer. At this moment the next box ¢, is packed

in the position (0, y(e*),0), where y(e*) = max{y(e;),7 = 1,...,k — 1}. The process continues in this way until

abox ¢; is found that does not fit in the first level. Then the algorithm packs this box in a new level at the height
z(e1). The agorithm proceeds in this way until all boxes of L have been packed.

The agorithm NFDHY is analogous to the algorithm NFDH”, except that it generates the layers in the y-axis
direction (for a more detailed description see [18]).

The following result will be useful (see [20, 21]).

Lemma3.l Let L be an instance of 3SP" and P be a packing of I consisting of levels NV, ..., N, such that
min{z(e) : e € N;} > max{z(e) : e € N;11}, and S(NV;) > sabfor agivenconstant s > 0,7 =1,...,v — 1.
Then H(P) < LY | 7

s ab

If apacking P satisfies the above inequality, we say that P has a volume guarantee of s.

Given a set of boxes S, we call these boxes as f-boxes if we can obtain a packing of .S with volume guarantee
of at least f. For example, the boxes 5 C* [£,1; 1,1] are 1-boxes, since we can sort the boxes in S in non-
increasing order of height and place two boxes in each level, each box b with S(b) > %b except perhaps in the last
level. From Lemma 3.1, the obtained packing has volume guarantee%. Another way to obtain a packing Pg of S
with volume guarantee % isto iteratively pack the boxes generating two stacks, from the bottom of the bin, packing
the next box of S at the top of the stack with smallest height. See Figure 1. When all boxes have been packed, the
two stacks have almost the same height, except by a difference of Z. Since the bottom area of each box is at Ieast%b
and the height difference of the two stacks is at most Z, we can conclude that V(S) > % (H(Pg) — Z). Isolating
H (Ps) we can see that packing Ps has a volume guarantee of %

Figure 1. Two stacks of boxes.

Algorithm LL: Another algorithm we use isthe algorithm LL,,, presented by Li and Cheng [19]. It isused to pack
lists L such that L c C;. The Algorithm LL first sorts the boxes in L in non-increasing order of their height and
then divides L into sublists Ly, ..., L, suchthat L = L||...||L,. Each sublist L; has total bottom area S(L;)

that is at least =2 ab (except possibly for the last sublist) but not more than ”~2ab + 4 Then, it uses a two-

dimensional packing subroutine to pack each sublist into only one level (the subroutine is proved to pack in only
one hin if the total area of rectangles is bounded in this way). Clearly, the area occupation in each level is at least
m=24h, and using Lemma 3.1 the following holds.

Lemma 3.2 [19] If P is a packing generated by the algorithm LI,,, for an instance . C Cp/, then LL,, (L) <
V(L) + Z.
m—2

Algorithm A3S: Another algorithm we use is the algorithm A3S, ,, presented in [25]. This algorithm does not
use any rotation. It divides the input list L C G, , into several sublists and apply specific algorithms for each one.
Each packing is alevel-oriented packing in the conditions presented for Lemma 3.1, with area occupation of at least

mab in each level. The following holds for this algorithm.
Lemma 3.3 If P is a packing generated by the algorithm A3S, , for an instance L C C, ,, then A3S, ,(L) <

(p+1)(g+1)
T V(L)+6Z.
Denote by 3S,,, the algorithm A3S. 1 . Using Lemma 3.3, the following holds.

m’m

Corollary 3.4 If P is a packing generated by the algorithm 3S,, for an instance L C Cp, 1, then 3S,,(L) <
(1) V(L) +62.

3.2 ldeaof thealgorithm TRI .

First, let us give an idea of the algorithm TRI,, .. Consider the set of boxes defined by the sets, . . . , & (mentioned
in Section 2.1). Now, consider an input list of boxes for 3SP(a, b).

(i) First rotate each box e € § of theinput list, if possible, to abox with orientation ¢ € 6, U & U §4.

(i) Now, rotate each remaining box e € §, if possible, to abox with orientation ¢ € § in such away that z(¢/) is

minimum.

8 £ £ 8 £ £

) ~ 1) ° 1

MO.,S,?) (5,7,10)
e
Ql pg p4 p?)
12 12
@ (b)

Figure 2: (a) Partition of boxesinto parts (view of the zy-plane) and (b) rotation of abox with dimensions (10,5, 7)
toabox (5,7,10).

Figure 2 illustrates step (i). Let L be the resulting input list, after these two steps and let [; be the set L N &, for
i=1,...,4.

If we apply algorithm A3S, , for sublists L1, ..., L4 with appropriate values of p and ¢ for each sublist, we
obtain packings P, . .., P4 for which the following holds:

H(Py) < ﬁviiluclz, 1)
H(Py) < %fouczz, 2
H(P3) < %ngucgz, 3)
HP) < o+ 0z, *

8

where C;, i = 1,...,4, are constants. That is, the boxes in the lists Ly, Lj, Ly and L4 are j-boxes, -boxes,
£-boxes and 3-boxes, respectively.
Note that after steps (i) and (ii) the boxes of 1; can only be packed one on top of the other, and therefore,

H(P)) = OPT(L;) < OPT(L). (5)

Letn, = H(Py) — C1Z and ny = Y1, (H(P;) — C;Z). Now we have two lower bounds for the height of an
optimum packing: the height of packing 7 and the volume based lower bound % That is,

OPT(L) > H(P)=mn (6)
and
V(L) _ V(L) | s~ V(L)
OPT(L) > —2F=—1 +; o
1 1
From (6) and (7), we have
OPT(L) > max{nl,inl—kéng}. (8)

Using the above relation, we can prove the following inequality for the final packing P = R||P2 | P3| Ps.

H(P) = H(P1)+ H(P2) + H(P3) + H(Ps)

= n1+n2+CZ
ny + N9

< OPT(L)+CZ
~ max{ny, inl + %ng} (L)

= «/OPT(L) + CZ,

where C = Y21 | Cyand o = max{n’l“jﬁ#m}. The value of o/ can be bounded by 3.25 using the following
lemma, shown in [23]. Y

Lemma 3.5 Suppose X, Y, x,y arereal numberssuchthat z > 0and0 < X <Y < 1. Then

r+y <1+l—X
max{z, Xz +Yy} ~ Yy

In the analysis we considered that the packing that was generated consists of two parts: one optimum pack-
ing (1) with “poor” volume guarantee (of i) and the other part (packing 7| Ps||P4) with a “medium” volume
guarantee (of at least 3).

Note that if we could improve the volume guarantee of i or % that appear in the ratio «/, then we obtain abound
that is better than 3.25. So, the first idea used in the algorithm TRI, . is to use a critical combination strategy to
improve the volume guarantee of one of the parts. In each combination step, we combine two types of boxes, each
type associated with a small volume guarantee. Although the boxes of each type may lead to packings with poor
volume guarantee, if packed separately, the combined packing may have agood volume guarantee. The arrangement
using two types of boxes may have a combination that leads to a better volume occupation than with only one type.

For each agorithm, we define the sublists that leads to packings with poor volume guarantee for each region,
denoted as critical boxes, and make a combined packing with good volume guarantee, which we denote by good
packings.

3.3 Combining critical £-boxeswith critical -boxes

In this section we present the algorithms that combine critical %-boxeﬁ: COMBINE?® and COMBINE-AB;j. The
packing obtained by the combination step has a good volume guarantee, of at least 0.457.

We consider the combination of boxes of type A = A || ... [|Ag+14 with boxes of type B = B ... [[Br+14
(throughout the paper, we denote the critical sets with lettered sets or lettered indexes). These sets are illustrated
in Figure 3 and are produced by algorithm COMBINE-AB;,. Since this algorithm is also used as a subroutine for
problem 3BP", it will be described in a more general way.

The combination is performed in steps by combining boxes of type .4 with boxes of type B;, for 1 < 7,5 <
k+14. At each combination step, all boxes of type .4; or all boxes of type B; aretotally packed. Figure 4 illustrates
a packing that combines such boxes. The final combined packing of boxes of type A and 55 is the concatenation of
all combined packings.

To describe algorithm COMBINE-AB7, we have to define some numbers which are used to define critical sets.
For each critical subset A; and B, we can obtain positions and use the algorithm COMBINE to obtain a combined
packing of items of .4; U B;, such that the volume guarantee of the combined packing is at Ieastg—z5 and all items of
one of these critical subsets aretotally packed. These numbers have aready been used in[21, 20]. For completeness,
we present them and also the critical sets and related results.

y
1
802 801
S2 O R kﬁngﬁkﬂ', B ,7
2 e ‘
T1 4]9 CIITIIIIIIIIIIIIIIIIIIIIII It ::Cf:: N :::H’:
T2 Ejg_k‘z
Y| i ‘ k
s P Bii1 :
u4 /A i I
o DU Bigi2 |
vs : Do Bras |
16 ‘ LU B
w7 o B
116 o Pl ‘
17 s S Bada
0 117 U7 U5 U4 13 Lo vz ‘213 1 z
116 = U6 L ‘
Tk T2T1 S182 Sk

Figure 3: Sublists A; := A;¥ and B; := B;” whena = b = 1.

Definition 3.6 Let r%k), rék), . ,r,(fgm and sgk), sgk), . ,s,(jgm be real numbers defined as follows:

10

. rgk), rgk), . ,r,(f) are such that
k k k k k k k k k .
pBIL— 0 ey =y = =W =Wy = La =) and r M) < 4
k k k
° Tl(c+)1:%7 T;(H)g:i, 77"15:4215:%7’
osgk)zl—rgk)fori: ooy K
A | k2
o sgﬁi—l—(%> fori=1,...,14;

The following result can be proved using a continuity argument.
Claim 3.7 The numbers rﬁk),rék), . ,r,(f) are such that r§k) > rék) > > r,(f) > £ and rEk) — g ask — oo.

For simplicity, we omit the superscripts (%) of the notation r®) s when £ is clear from the context.

i 171

Using the numbers in Definition 3.6, we define the following critical sets (see Figure 3).

1 1
AV =™ |:Ti+1ari ; 5,81}7 B =c* [?51‘ ; Ti+1vri:|7
k+14 k+14
A = | AP, B = |] B
i 1 "

i=1 =1

We use basically the same procedure used in [21] with the algorithm COMBINE, with a small modification.
Algorithm COMBINE?: Thisalgorithmiscalled with the parameters (L, 7%, 72, p', p?), wherep! = (pl,pi,....pL))
consists of the positions in the bottom of box B where the columns of boxes of type 7! should start and p* =
(p?,p3,...,p2,) consists of the positions in the bottom of box B where the columns of boxes of type 72 should
start. Each point p = (q:}, y;-) represents the z-axis and the y-axis coordinates where the first box (if any) of each
column of the respective type must be packed. Note that the z-axis coordinate need not be specified since it may
always be assumed to be 0 (corresponding to the bottom of box B). Here we are assuming that the positions g, p?
and the types 7, 72 are chosen in such away that the defined packing can always be performed (a column will not
intersect any other column). We call height of a column the sum of the height of all boxes in that column. Initially,
al ny + no columns are empty, starting at the bottom of box B. At each iteration, the algorithm chooses a column
with the smallest height, say a column given by the position ﬁ] and packs the next box e of type 77, updating the
list L after each iteration. If there is no such box e, then the algorithm teminates returning the partial packing P of
L.

We denote by COMBINE" and COMBINEY the corresponding version of the algorithm COMBINE? which
generates columnsin the x and y directions, respectively, or by COMBINE when considering any of these versions.
The only modification of the algorithm COMBINE, from the version presented in [21], is that it may consider
orthogonal rotations around any axis, to fit in the sets A™ or B7¥, or any set (type) given as a parameter. The next
lemmaisvalid for this algorithm:

Lemma 3.8 [21] Let P be the packing of I/ C L generated by the algorithm COMBINE when applied to lists of
types 7' and 72 and list of positions pi, ph, ..., pf,., i = 1,2. If S(e) > s;ab, for all boxes e in T* (i = 1,2), then
H(P) < YU | 7

— sini+s2ne ab

We aso denote the sum s;nq + sone, in Lemma 3.8, as the volume guarantee of the packing P.
To combine all boxes of type A™ or 3*¥, we call the algorithm COMBINE? with pairs of types A7 and B;".
Since each run of algorithm COMBINE packs all boxes of one type, it is sufficient to call COMBINE 2(k + 14)

11

Figure 4: Example of apacking produced by algorithm COMBINE with 3 columns.

times. We denote this algorithm as COMBINE-AB}, (L, COMBINE). The agorithm COMBINE is given as a
parameter, since in the next section, we use the algorithm COMBINE-AB;, to pack boxes into bins for problem
3BP* with another subroutine. Figure 4 illustrates a packing produced by algorithm COMBINE-AB.

The following lemmalis obtained from Lemma 3.8, using the fact that the volume guarantee of packing Pip is
at least 3.

Lemma3.9 [21] If P4p isapacking of alist L4p generated by the algorithm COMBINE-AB;, with parameters

(L, COMBINE), then
1 V(LAB)

< -
= 17/36 ab

H(Pag) + (2k +41)Z.

Figure 5 presents the volume guarantee one can obtain for each region using only list partition without any
combination. As the algorithrm COMBINE-AB;, packs all boxes of type A or type B, assume that all boxes of
type B have been packed by this routine. Figure 6 illustrates the volume guarantee for the remaining boxes, in each
region, and the situation when all boxes of type 13 have been packed. Now, if possible rotate each box in parts?, U6,
that fitsin the set 85 U 4. Clearly, after this step there will be no box which, if rotated, becomes a box in the set 15,
because the construction of packing P45 considers any possible rotation of boxesin theinput list L.

Sincethe remaining itemsin &, U § cannot be packed side by side in the y-dimension, we have now an instance
of the two-dimensional strip packing problem, for which we can obtain an almost optimum packing, (according to
Theorem 2.4), and volume guarantee at least ; (minimum of } and £). To this end, rotate each box e € # U £,
if possible, to abox ¢ € § U §, so that y(e’) is maximum (this allows to consider each box as a smallest possible
rectangle in the 2z plane). Therefore, at this point, we can obtain afinal packing consisting of two parts: one almost
optimum packing with volume guaranteei and another (for the remaining boxes) with volume guaranteeg. Inthis
case, when e — 0, we can use Lemma 3.5 to obtain a packing with asymptotic performance bound

Ry + Rl

~ 2.6875.
max{ﬁh/p ihl + %hé}

12

4/9 1/4
Lp
1/3

4/9 4/9

a

Figure 5: Critical sets A and B.

b
@2 6Ol
1/3 1/4
EMPTY
4/9 4/9
@4 603

a

Figure 6: After combination of boxes of type .A and 5: All boxes of type 3 have been packed.

3.4 Combining critical {-boxeswith critical $-boxes

At this point, we continue with a new combination step, just after the generation of the combination of boxes of
type A and B that produced P45. Now, we combine critical %-box%, which are given by the set L, and critical

%-box%, which are given by the set Lp = L’,||L/,. These critical sets can be seen in Figure 9. The precise
definition of sets Lo and Lp can be found in the description of Algorithm TRI, .. these are the set of boxes of

types 7o and Tp, defined in step 4.3. The combined packing has also a good volume guarantee (which is also at
least 1 + 2 = 47 = 0.472...). Figures 7 and 8 present the regions of the critical sets L and L', || L7, and the status
when the boxes of each critical set aretotally packed. The fractions indicate the minimum volume guarantee we can
obtain for each region. The combined packing P is the concatenation of two packings: 7 ,, which combines
L¢ and L', and P/, which combines the remaining items of Lo and L7,. The packing P, has one column

consisting of itemsin L and one column consisting of itemsin L,. The packing P/, has one column consisting
of itemsin L¢ and two columns consisting of itemsin Lj,.

If al critical %-boxes have been packed in Pop, we obtain the following bound:

h + hh
max{{2,0.271h; + 414}

13

b
@2 6Ol
1/3 0.271
EMPTY
EMPTY
4/9 4/9
rs04 pS

a

Figure 7: After combination of Lo and Lp: Lo € Pop.

1/3 1/4

EMPTY _LLLLL‘ EMPTY

EMPTY
0.457 0.457

a

Figure 8: After combination of Lo and Lp: Lp € Pep.

Otherwise, if all critical %-box% have been packed in Pop we obtain the following bound:
Ry + hY

max{ 7L, Lh7 4 0.457hy}

In both cases, a simple calculation shows that the asymptotic performance bound is at most 2.64.

3.5 Description and analysis of algorithm TRI,,

Inthis section we present aformal descritption of algorithm TRI, . and analyse its asympototic performance bound.
We observe that the value of ¢ defined in step 2 was obtained by imposing equality for the bounds obtained in both
cases analysed in the proof of Theorem 3.10.

The algorithm TRI . and the proof of its approximation factor follows very closely the ideas presented in
sections 3.2, 3.3 and 3.4. The packings obtained with combinations of critical sets have lettered indexes. Pip
and Pcp. Both packings have good volume guarantee (at least 0.47). The remaining boxes are divided into many
sublists, but basically, the final packing is divided into two parts (see Section 3.4): one with poor volume guarantee
(inCase1itis0.271 and in Case 2 it is 0.25) and the other part has a good volume guarantee (in Case 1 it is 0.444

14

and in Case 2 it is 0.457). For the part with poor volume guarantee, we could obtain an almost optimum packing
(onewithin (1 + €) of the optimum).

Algorithm TRI (L)
Input: List of boxes L (instance of 3SP(a, b)).
Output: Packing P of L into abin B = (a,b, c0), alowing orthogonal rotations.

1 Rotate each box e € §, if possible, toabox ¢ € § U §3 U §4.

2 t+ (V33 —3)/6.

3 Pap < COMBINE-AB; (L, COMBINE).
L+« L\ L(Pap)-

4 |f al boxes of type B were packed in P4 then

4.1 Rotate each box e € L N 63, if possible, to abox ¢ € §3 U §4.
4.2 Rotate each box e € L N (¥ U), if possible, to abox ¢ € # U § such that y(e) is maximum.

4.3 Let
1—t], Th=C"[0,t;0,1],
]

. To=THUTH.

4.4 Generate a packing Pcp asfollows.
Pcpr < COMBINE(L, T, T}, [(0,0)],[(0,1 — ¢
Pcopr < COMBINE(L \ Lepr, Te, T, 1(0,0)], [
Pcp + Pepl|Pepr;
Lep < Lep' U Lepr;

4.5 Subdivide thelist L into sublists L4, . .., Log as follows (see Figure 9).

-
(0,1 —1),(3,1—1t)]).

Li « LOC™ [%,1; %ﬁ} i=1,...,16, Lz« LOC™[L,1;0,4],

L18<_mexy [%7%7 %7%]7 L19<_mexy [%7%7 iu%]a

L20<_mexy [%7%707%}7 L21<_mexy [i?%a %7%}7

L22<_anxy [07i7 %7%]7 L23<_anxy [07%707%]
4.6 Generate packings Py, ..., Po3 asfollows.

P; + NFDHY(L;) for i=1,...,21;
P; < NFDH*(L;) for = 22;
ng < LL3(L23).
4.7 Puuz < Papl|Pep||Pall - - || Pos;
48 L < L\ L(Pguz)- I* Notethat L C & U 8. */
4.9 Consider each box e € L as arectangle of length z(e) and height y(e) and the box B = (a,b,00) asa
rectangular strip of length a and unlimited height. Apply algorithm Jv§ to L (see Theorem 2.4) and let
Pjvs bethe resulting packing.
Let Pxrpu be the packing NFDH” (L N X'[0, 1])INFDH* (L N X[3, 3])|INFDH* (L N X[3, 1]).
Let PsTrip be the smallest packlng in {pva, PNFDH}-
4.10 P < Pstrip||Pauz-

5 If al boxes of type A;Y were packed in P4z then generate a packing P of L asin step 4 in symmetric way.

15

6 Return P.
End algorithm.

1t L
12 C
t r— ng e LI ”””””””
Lo Loi| i j—lﬂ I/
D _|_‘ D
1/3
ng EMPTY L2
14
| Ls
1/5 T
4
1/6 Los ‘ ‘ s
7 Loo
17 [Lis
1/18 f1 5
17
0 vs 13 12 23 1 x

Figure 9: Sublist after the packing of list Lp = (B U... U Bgi14).

Theorem 3.10 For any instance L for the problem 3SP", we have
1
TRI, (L) < a, OPT(L) + O (k + _> z
€

where ay . — (25 4 31/33)/16 = 2.639 ... ask — oo and € — 0.

Proof. We present the proof for the case in which all boxes of type ;¥ were packed in step 4. The proof for the
other case (step 5) is analogous. We analyse two subcases, according to step 4.4 (Ic C Lep).

Each packing P;, ¢ € {1,...,23} \ {1, 18}, has avolume guarantee of at |east },}—g Furthermore, this minimum
value is attained when i € {16, 17}. Therefore, applying Lemma 3.1 and 3.2 we can conclude that

L.
Hp) < B8V Lo e 1, 230\ {1, 18},)
17 ab
From Lemma 3.9, we have
L
H(Pap) < %% + (2K +41)Z. (10)

16

For the packings Pops and Popr (step 4.4), the volume guarantee (by Lemma 3.8) is at least i + 5, and
therefore L V(Lep)
H(Pcp) < T IfD
1t3 @
Let us analyse the two possibilities. Lo € Lop or Lp € Lep (see step 4.4).
Casel. Lo C Lep.
For the packings P; and P;g we have

+27. (11)

1 V(L
apy < LY g (12)
r1 ab
1V(L
H(Pi) < 7 (618) +Z. (13)
5 a
By Theorem 2.4,
H(Pstrip) < H(Pjyvs) < (14 €)OPT(LsTrIP) + S Z, (14)

where Lgrrip is the set of items packed in Psrrip. Note that to derive the last inequality we used the fact that
the items in Lgprip cannot be packed side by side in the y-direction. Moreover, any item e € Igrrrp has been
previously rotated to have maximum (possible) value of y(e). So, applying agorithm NFDH to Igrrp We obtain

1 V(Lstrip)
(1-t)% ab

H(Pstrir) < H(Pnrpu) < +3Z. (15)

Now, for the packing Puuz = Pap||Pill ... ||P23, using the inequalities (10),...,(13) and the fact that r <
min {4, 1 + %, 5 }, we obtain

279
]- Laux
H(Pae) < — 2] 4 (o1 4 68)2, (16)
1
where L. denotes the set of boxes in the packing 7,
Let
ny = H(Pstrip) — BeZ, (17)
ny = H(Pauz)— (2k +68)Z. (18)

From inequality (14) we have n; < (1 + ¢)OPT(Lgrrip) and therefore,

OPT(L) > OPT(LsTrip) > 39 (19)
From (16) and (18) we can conclude that
M > rng, (20)
ab
and from (15) and (17), we have
V(LstrIP) > (1- t)nl. 21)

ab 2

Since V(L) = V(Lauz) + V(LsTrIP), UsiNg (20) and (21) we obtain % > ring + @nl.
So,

Combining (19) and the inequality above, we get

OPT(L) > max {%ﬂnl, %nl + rlng} .
Since H(P) = H(Pauz) + H(Pstrip); using (17) and (18), we have
H(P) = (ng + (2k + 68) + 11 + B:) = n1 +ny + 2k + 1) 7,
where 5. = . + 68. Therefore,

TRIj (L) < a§€76(r1)OPT(L) + (2k + 8))Z,

where 042:,6(7"1) = (n1 + ng)/max{l%renl, (12;”711 + rlng}. Now using Lemma 3.5, we can conclude that
1-t)(1
o (rr) < [£ = 098D 1 (14).

Case2. Lp C L¢ep.

As the proof of this case is analogous, we omit some details. Since al rectangles of L, were packed in Pcp,
we have no critical i-box& in L. More precisely, we have a volume guarantee of at least ¢ for the packing 7. The
same can be verified for the packing P;s. Thus, the following holds.

V(L)

H(P) < % Wiz tor ieqis) 22)
Sincet < min {1 + -, 3T}, from (22), (10) and (11) we have
H(Pauz) < % V(LZW) + (2k +68)Z. (23)
By Theorem 2.4,
H(Pstrip) < H(Pyvs) < (1 +€)OPT(LsTrIP) + fe- (24)

The packing Pnxrpu has avolume guarantee of at least % and since H(Pstrip) < H(Pnrpu), We have

1 V(LstrIp)

H(PSTRIP) < 1/—4T +3Z. (25)
Let
ni = H(Pstrip) — fcZ, and
ny = H(Pauz) — (2k + 68)Z.

Then, from (24) we can conclude that

OPT(L) > OPT(Lstrip) >

1 T 677,1.

Now, from (23) and (25), we have

V(Laux)
ab

V(L 1
> tng and w > —nyq,

and therefore,

o,

1 1
PT(L) > —nq, - .
OPT()_max{1+€n1,4n1+tng}

Thus, TR, (L) < af (r1)OPT(L) + (2k +) Z, where a] (r1) < [% e e)]. The last inequality

follows by taking age(rl) = (n1 + ng)/max {ﬁnl, inl + tng} and using Lemma 3.5.

From both cases above, we can conclude that for £ — oo and € — 0 the statement of the theorem holds. ad

4 Three-Dimensional Bin Packing Problem

In this section, we consider the three-dimensional bin packing problem with rotation (3BP). We present an al-
gorithm with an asymptotic performance bound that may converge to a value smaller than 4.89. We denote the
agorithm of this section by BOX;, ..

4.1 Subroutines
Before presenting the main algorithm, we describe some algorithms used as subroutines.

Algorithm H3B: This algorithm uses the same strategy used in the algorithm HFF (Hybrid First Fit) presented by
Chung, Garey and Johnson [5]. The algorithm H3B* generates a packing in two steps. First it generates a three-
dimensional strip packing of L, subdivided in levels and using the z-axis as a height dimension, and then packs the
levels into bins, using a one-dimensiona bin packing algorithm. The algorithms for the problems 3SP and 1BP
used in these steps must be given as subroutines. We denote by H3B, , . the algorithm that uses the algorithms
A3S,, , and FF'D as subroutines and by H3B,,, the algorithm H3B1 1 1 . Thefollowing holds for this algorithm.

m’m’m

Lemma 4.1 [22] If P isapacking generated by thealgorithmH3B, , , for aninstance L C C, ,.», then H3B,, ; (L) <
(p+1)(g+1)(r+1)

e V(L) + 14

Lemma4.2 If P is a packing generated by the algorithm H3B,, for an instance L. C C,,, then H3B,,(L) <
(1) V(L) + 14,

Denote by H3D* and H3DY the variants of this algorithm where the generation of levelsisdone in the x and y
direction, respectively.

Algorithm FFDC: We use the same scheme of the algorithm COMBINE used for 3SP*. For that, we first modify
the algorithm COMBINE to the bin packing version. We denote this algorithm as FFDC* (First Fit Decreasing
Combine for z-axis). The algorithm FFDC* combines the strategy of the algorithm COMBINE with the strategy
of the algorithm FFD to pack boxes into columns.

The input parameters are: a list of boxes L, two set of boxes 7; and 75 and two coordinate lists p; and ps
associated with these sets. Each column starts at the bottom of abox B in acoordinate p € p U po. The columns
located in coordinates of list [p;] have only boxes of type 7;, i« = 1,2, and start in the plane xy growing in the
direction of the z-axis.

Algorithm FFDC?
Input: (L, 71,72, p1,p2) Il each p; isalist of coordinates in the plane zy.
Output: Partial packing of L into B such that all boxes of type 7 or all boxes of type 75 are totally packed.

19

1 While there are non-packed boxesin L of type 7, and 75 do

1.1 Let P1, P, ..., P; bethe packingsinthebins By, ..., B;, respectively, generated so far.

1.2 Take a non-packed box ¢ of type 7; with z(e’) maximum. If possible, pack ¢ in a column of boxes
corresponding to 71 in Py, ..., P;, without violating the limits of the corresponding bin. If necessary,
rotate the box ¢’ so asto have ¢ € 7;.

1.3 If itisnot possible to pack abox in step 1.2, pack (if possible) the next box ¢, of type 73, using the same
strategy used in step 1.2, but with columns of boxes of type %.

1.4 If it was not possible to pack an item by steps 1.2 and 1.3, let i < ¢ + 1; generate a new empty packing
P; (that starts with empty columns in positions p; U ps) inanew bin B;.

2 Return Py, Ps, ..., P;.
end algorithm.

We denote by FFDC”* and FFDCY the corresponding versions of the algorithm FEDC® that generates columns
in the z and y directions, respectively.

4.2 Main algorithm for 3BP*

Now, we present the ideas behind the algorithm BOX;, .. To understand this algorithm, we first consider the volume
guarantee one could obtain if only list partition and the next fit decreasing algorithms were used. Suppose we
partition the region of boxes in types 7, for 4, j, k € {0,1} asfollows:

Xy + X[0, 3], Xy X[5,1],
Yo < V[0, 1], N+ V5.1,
2y« Z[0,1], Z) + Z[3,1].

First, rotate each box e € L of type 7i11, if possible, to abox ¢ € U;ji21117:5%- Now, consider the volume
guarantee one can obtain with Lemma 4.1, only with list partition and algorithm H3B. Partition L into sets G, :=
LN Tijg, fori, j, k € {0,1}. We have the following volume guarantees for each sublist:

e In the set S11; we have the larger items. Since Si11 = L N X[1,1] N Y[3,1] N Z[3,1], we have that
Sijk € C1,1,1. From Lemma4.1 we have that

3By 11 (S1) < Grba+Da+1)

V(Snl) + 14

- 1-1-1
1}8 (S111) + 14.
Therefore, the set S111 leads to the very poor volume guarantee of % The analysis for other sublists are
similar.
e For the boxesin S;;y, with i + j + k = 2, we can obtain avolume guarantee of 312 = 1 = 0.166 .
e For the sets S;;;, with i + j + k = 1, we can obtain avolume guarantee of 322 = 2 = 0.222

e For the set Sy, We can obtain a packing with avolume guaranteeof 222 = £ = 0.296.... ..

20

The critical sets defined for algorithm BOX;, . consider regions for which we obtain volume guarantee close to
% (In set 5111), % (In sets Sp11, S1o1 and 5110) and % (In sets Soo1, So10 and 5100). Since no two boxes of S;1; can
be packed in asame hin, placing one box of \S;11 in each bin leads to an optimum packing of S;11. Therefore, using
Lemma 3.5, we can obtain a packing with asymptotic performance that is bounded by

ni + ng
T T < 6.25.
max {nl, g1 + 6??,2}

In the next sections, we define and combine critical setsto obtain packings with better bounds.

4.2.1 Combining critical £-boxeswith critical +-boxes

The algorithm first combines critical sets of type 7%, with i + j + k = 2, using the algorithm COMBINE-ABy,
with subroutine FFDC.

First, it combines critical %-box& of type 7p11 and 7191 obtaining a combined packing with a good volume
guarantee. If al critical boxes of type 711 have been packed, it combines critical boxes of type 7191 with critical
boxes of type 7i19; otherwise, it combines critical boxes of type 7511 with critical boxes of type 7i19. In each
combination step, it defines the corresponding critical sets. To combine critical boxes of type 711 and Tqg1, it
uses the routine COMBINE-AB;, with subroutine FFDC?. See Figure 11(a). Note that all boxes e € To11 U Ti01
have z(e) > § and each bin produced in the combined packing has three boxes, except perhaps in the last, with
total bottom area at least 2Zab. Therefore, the volume guarantee of this combined packing is at leastil 1 = 11 =
0.231.... The same volume guarantee can be obtained when critical %-bOXGS of types Tp11 and T11¢ are combined.
Denote by P the packing produced by calling algorithm COMBINE-AB

Before continuing with new combination steps, let us give the idea behind the direction of these combinations.
After the generation of packing P4z, we can obtain packings with volume guarantee close to% =0.222... for the
remaining boxes, except for those in 719 U 7T111. Fortunately, if each box e € 7119 U 7111 IS previoudly rotated to
abox € € T, for ijk ¢ {110,111}, the remaining itemsin L N (7110 U 7111) can only be packed side by side
in the z-axis. Therefore, it is an instance of a one-dimensional bin packing problem, for which we can obtain an
almost optimum packing (see Theorem 2.3) and volume guarantee of at Ieest%. This leads to a final packing with

asymptotic performance bound

m < 4.9375.

1 1 2
max {mnl, gnl + §n2}

We can abtain afurther improvement with some more combinations.

4.2.2 Combining critical £-boxes with critical 2-boxes

Assume that all critica %-box& of types 7911 and 7191 have been totally packed. So, the current situation is the
following: The packing P45 has volume guarantee at least % and the remaining boxes in the set 75,1 and 710 lead
to packings with volume guarantee close to % The last combination steps consider the critical %-bOXGS, in the set
Ti11, and the critical 3-boxesin Uijreqi11,0003 Tijk- The combined packing of this step, denoted by 7, has good
volume guarantee (that isat least £ = 0.225. . .) and totally packs one of the critical sets. See Figures 11(b) and (c).

We have two cases, depending on which critical set istotally packed:
Case 1. All critica %-boxes are totally packed. In this case, the asymptotic performance bound is at most

n1 -+ ne9

1,1 P, |
maX{HEnl, g1+ 2n2}

21

c
Lo11 Lii
Yy
Loo1 - Lot
. .
2
b _ .
Lo1o Lo -
b
2 5
Looo - Lioo
0 % a x

Figure 10: Lists L .

Case 2. All critica %-boxes are totally packed. In this case, the asymptotic performance bound is at most

n1 -+ ne9

1-p 2 '
maX{1+€n1, 1 n1+§n2}

In both cases, the performance bounds is close to 4.882. The value of p was obtained in such a way that the two
cases give the same bound.

423 Algorithm BOX},

The Algorithm BOX;, . and the proof of its approximation factor follows the ideas presented in Section 4.2. As
before, the packings obtained with combination of critical sets have lettered indexes. P45 and Pop, since the ideas
used are close to the ones used in algorithm TR, .. The volume guarantees we can obtain for the bin packing case
are worse than those for the strip packing version. So, in this case we say that a good volume guarantee, obtained
for packings Pap and Pcp, is close to 0.236. The final packing is divided into two parts, one with poor volume
guarantee (in Case 1itis0.125 and in Case 2t is0.137) and the other part with good volume guarantee (in Case 1
itis0.225 and in Case 2 it is 0.222). Here we could aso obtain an aimost optimum packing (within (1 + ¢) of the
optimum) for the items in the part with poor volume guarantee.
We present now aformal description of the algorithm we explained previousdly.

Algorithm BOXy, (L)
Input: List of boxes L (instance of 3BP"(a, b, ¢)).
Output: Packing P of L into bins B = (a, b, ¢).

1 Let
2(0<—2([0,1§] X1<—X[1§ 1],
y0<—y[7§] ylkyb 1],
2y« Z[0,1], 2y« Z[5,1];

Tijk < XiNY; N 2y, igk € {0,1} .

22

V137-9

3 Rotate each box e € L N Tq11, if possible, in such away that e fitsin one of the sets 7, ijk # 111. Ties can be
decided arbitrarily.

4 P! 5 < COMBINE-AB; (L, Toi1, Tio1, FFDC?); L« L\ L(P'yp);
If all boxes of type To11 N .A;Y were packed then

,PJZB — COMBINE-AB% (L, 7-101, 7-110, FFDCx),
Otherwise // all boxes of type Tio1 N B,.Y were packed. //
,PZB — COMBINE-AB%(L, 7110, 7611, FFDCy),

5 Consider that all boxes of type (7511 N A.Y) and (Ti01 N A}°) were totally packed.

5.1 Rotate each box e € L of type Ti1o, if possible, to abox ¢ € 7, for someijk ¢ {111,110},

5.2 Rotate each box e € L of type 7110 U T111, if possible, to abox ¢ € Ti19 U 7111 such that z(b) is
minimum.

5.3 Let L;j, < LN Ty fori, j,k € {0,1} (see Figure 10).

5.4 Pygy < H3D2(L000).

5.5 Generate a packing Pcp in the following manner.

PeY + FFDC?(Lo1y U Lyy1, Torn N X [3, pl, Tin N X[5,1 = p], [(0,0)], [(0,p)]);
L111 — Lqi11 \ E('Pngl, (See Flgure 11(b))
PR+ FFDC*(Lyoy U Li11, Tior N V[5. 5], Tin N V(5.1 = p], [(0,0)], (0, p)));
L111 — Lin \ L(PES;
P 4= FEDC? (Loor U Luat, Toor N X[3, 31 N V(5. 2], i 0 V(31— 9, (0,0), (0, 5)1,[(0,p)]);
L111 — L \ L(P2S;
POlo < FFDcy(L(HO U Llll’ 7610 n 2[3’ 2] N X[?)’p] 7111 N X[Q’ _p]7 [(07 0)7 (07 %)]7 [(0,]))])1
L111 — Lqi11 \ E('PngO, (See Flgure 11(C))
PIOO « FFDC? (L100 U Llll’ 7100 n y[?)’ 2] N 2[3’p] 7111 N Z[Q’ - p]’ [(07 0)7 (07 %)]7 [(Oup)])’
L111 L \ L(PED;
Pep PO UPLL U P UPAIS U PLS.
5.6 Generate packings of the remaining boxes of the sublists Z;;;, withi + j + k = 1.

5.6.1 Generate a packing Pyo1 of the remaining boxesin Lyg; in the following manner.
Let L{S,, ..., L33, beapartition of Lo, such that (see Figure 9).

L(1)(8)1 — LOOI nery [%7% ; %7%]7 L001 <~ LOOl nery [% % ; %7 %]7
Loy Loot NC™ 3,55 0,5, L001 < Lot NC™ 1,55 3. 3);
L(Q)gl < Lggy NC™Y [0,% ; %,%], LOOl < Log1 NC™Y [0 % ; 0, %]

73001 <+ H3D*(NFDHY, L{;,NF), i=18,...,21;
P32, + H3D*(NFDH*, L32, NF);
P23, « H3D*(BIY, ngl ,NF);
Poor = Poor U - - - U Pggy.
5.6.2 Generate a packl ng Po1o of the remaining boxes of Lg1(in away analogous to step 5.6.1, gener-
ating the levelsin the y-axis direction.

23

5.6.3 Generate a packing P of the remaining boxes of L in away analogous to step 5.6.1, gener-
ating the levelsin the z-axis direction.
5.7 Generate a packing of the remaining boxes of Ly1; and Lyg;.

5.7.1 Generate apacking P11 of the remaining boxes of Ly11.
Let (Ldyq, ..., LyT,) beapartition of Lo, defined as follows (see Figure 9).

Liy < Lon N Vg =5, i=1,...,16;
Loty < Lon N[0, 55
Pii1 < H3D™(NFDHY, Ly, NF), i=1,...,1T;

PO]_]_ <— P&ll U e U P&]’_Yl
5.7.2 Generate apacking P11 of the remaining boxes of L;y; in away analogous to step 5.7.1, consid-

ering the plane yz instead of xy.
5.8 Generate a packing of the remaining boxes of L,19 and L1 asfollows.

58.1 Lynt < Li1gU Lq11;
5.8.2 Consider each box e of Lyny as a one-dimensiona item of length z(e) and each bin B as a

one-dimensional bin with length c.
5.8.3 PIIJNI — FFD'Z(LUNI),
584 ,P{}NI — FL?(LUNI);
5.8.5 Punt «+ (P € {P{ni: PUnit | #(P) isminimum).

5.9 Puuz < Pap U Pcp U Pooo U Poor U Poro U Proo U Porr U Piot;
510 P < Punt U Pauz-

6 For the other cases, the steps are analogous to step 5, differing only in the planes and directions the packing is
generated.

7 Return P.

end algorithm.

Y @ Y (b) y (©

Figure 11: Example of bins: (a) Bin of packing P4 . (b) Binwith boxes of types 7511 N X'[3, p] and Ti11 N X[, 1—

p]. (c) Bin with boxes of types To10 N Z[%, 4] N X[, p] and Ti11 N X[5,1 — pl.

The next result shows a bound for the asymptotic performance of algorithm BOX, ..

24

Theorem 4.3 For any list of boxes L for 3BP*, we have
BOXk:,e(L) < ak,eOPT(L) + Bk,ﬁ)
where ay, . — (434 3v/137)/16 = 4.882... ask — oo and e — 0; and 3, . isa constant that depends on £ and e.

Proof. First, denote by L;jk the boxes packed in the packing P, for 7,5,k € {0,1}. We analyse two cases,
considering the set M, defined as

1 1 1
M::LlllmX[_vl_p]my[§71_p]mz[§71_p]v

2
after step 5.5.
In what follows, for a packing @ we denote by b area(Q) the fraction of the bottom area of the bin B that is
occupied by the packing Q.

Casel. M # () after step 5.5.

By Lemma4.2 we have

1 V(L
ViLooo) | 1 (26)

#(Pooo) < 8727 abe

For the packing P4z, wehave ab_area(Pap) > % except perhapsin 2(2k + 41) bins. Since each box of Lap
has height greater than 5, we have

- 1 V(LAB)
—17/72 abc

#(PaB) + 4k + 82. (27)

For the packing Pcp, note that for each bin B of P, i € {011, 101,001,010, 100}, we have b_area(PL ;) >
i + %h except perhaps for the last bin of each packing 7% p- Also considering that each box has height greater than
5, we have

#(Pcp) < 1 1 V(Lcp)

6. 28
g+ % abe * (28)

For the packing Pyo1, for each bin B of P}, wehave ab_area(Py,) > 1. Notethat the boxes with small area
guarantee in LS, were totally packed in Pop, otherwise we would not have M +# (). Therefore, proceeding in the
same way as before, we have
1 V(Lyy)

< -
—17/72 abe

The same analysis we have made for packing 7y can be made for the packings P19 and Pig9. S0, the
following inequalities hold.

#(Poo1) + 8. (29)

1 V(L)

#(Po1o) < WTOCIO ; (30)
1 V(L)

#(P1oo) < 77 7@1;600 (31)

Now, consider the packing Py11. Note that for each packing 7, we have b_area(P},,) > p (this minimum is
attained for list L},), except perhaps in the last bin of the packing 7. Therefore,

1 V(Lon)

17. 2
p/2 abe 17 (32)

#(Po11) <

25

In the same way, we have the following inequality for packing Po1.

1 V(L
P <) g (33
From inequalities (26)—(33) and considering that 5 = min{%, 22, 1 + ZL}, we have
1 V(Laua
#(Paua:) S N () + C(Izgux (34)
p/2 abe

Finally, consider the packing Pyt generated for boxes of L;19 and Lq11 in step 5.8. The minimum volume in
each bin B of P{;y;, except perhaps in the last bin, is at least ‘%’C Therefore,

o L V(Lun)
—1/8 abe

Note that after the rotation of boxes made in step 5.1, thereisno box e in Iyyn; that can be rotated such that e fitsin
one of the types 71, ijk ¢ {110, 111}. So, after step 5.2, all boxes of Lynt will have the smallest height possible,
without leaving 7119 U T111. Therefore, after applying algorithm F1. in step 5.8.4, we have

#(Pin1) < (1+€)OPT(Luynt) + Cinr-
Since #(Puni) < max{#(P{n1), #(Pin1) }» We have

#(Pun1) + 1L

1 V(L
#Pow) < gaet i, (3)
#(Puni) < (14¢)OPT(Lunit) + Conr- (36)

From inequalities (34)—(36), we can conclude that
#(P) < a OPT(L) + B,

where O‘;c,e = (hl + hg)/max{#ehl, %hl + ghg} and ﬁ]@e = C(]fux + CIGJNI'
Case2. M = () after step 5.5.
The analysis is analogous to Case 1, and the details will be omitted. We can conclude that

1 V(Looo)
8/27 abc
1 Vi)
17/72 abc

1 V(Lep)
T+ abe

#(Pooo)

114,

#(PaB)

IN

+ 4k + 82,

#(Pcp) <

+ 6.

Furthermore, for each packing 7, we have b_area(P},,) > 3. This also holds for the packings Py and Pio.
Therefore, we have

1 V(L)
#(Poo1) 579 abe + 8,
1 V(Lyy)
< - 7
#(Powo) < 39 abe ;
1 V(Lig)
< 2\ o) g
#(P1oo) < 379 abe +8

26

For the packing Py, we have b_area(P;,,) > r1. The same also holds for packing Pyo;. Therefore,

1 V(L611)
< —— 4y
#(Poi1) < 72 abe + 17,
1 V(L,101)
< -+ 17.
#(Po1) < r1/2 abc +
From the above inequalities, we have
1 V(Lauz) i
auxr S Caux.
#(Paua) r1/2 abe +

Since M C Lq11 and the boxes of M were totaly packed, we have that the minimum volume of any box in 117 is
at least 14;73. Therefore, considering the packings of P19 and P11, we have

1 V(LUNI)
#(Puni) < (1—-p)/4 abe

#(PUNI) < (1 —|— G)OPT(LUNI) + C[EJNI.

+ 1.

So, we obtain
#(P) < o OPT(L) + By,

where o/ . = (hy + ha)/max{hy, S 2hy + Sho} and B e = CF,, + Cin-
Let ay . = max{aj ., o) }. Asfork — oo we haver; — 2, we can conclude from both cases above that

hmkﬁoo,eﬁo QL e < 4.882.... a

5 Concluding Remarks

We presented approximation algorithms for three-dimensional packing problems where orthogonal rotations are
allowed. We showed that these problems —in their general version— are as hard to approximate as the oriented
case. In this case, any approximation algorithm for the case with rotations can be used to obtain an approximation
algorithm for the oriented case with the same approximation bound. The two approximation agorithms for three-
dimensional packing problems presented in this paper can be implemented to run in time polynomial in the number
of items.

References

[1] N.Bansa, JR. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple dimensions. Inapproximability
results and approximation schemes. Mathematics of Operations Research, 31(1):31-49, 2006.

[2] N. Bansal, X. Han, K. Iwama, M. Sviridenko, and G. Zhang. Harmonic algorithm for 3-dimensiona strip
packing problem. In Proc. of the 18th Annual ACM-SAM Symposium on Discrete Algorithms, pages 1197—
1206, 2007.

[3] N.Bansal and M. Sviridenko. New approximability and inapproximability results for 2-dimensional bin pack-
ing. In Proc. of the 15th ACM-S AM Symposium on Discrete Algorithms, pages 189-196, 2004.

27

[4]

(3]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

A. Caprara. Packing 2-dimensional bins in harmony. In Proc. of the 43rd Symposium on Foundations of
Computer Science, pages 490499, 2002.

F.R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional bins. SAM Journal on Algebraic
and Discrete Methods, 3:66—76, 1982.

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing - an updated
survey. In G. Ausiello, M. Lucertini, and P. Serafini, editors, Algorithms design for computer system design,
pages 49-106. Springer-Verlag, New York, 1984.

E. G. Coffman, J., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: asurvey. In
D. Hochbaum, editor, Approximation Algorithms for NP-hard Problems, chapter 2, pages 46-93. PW'S, 1997.

E. G. Coffman, J., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds for level oriented
two-dimensional packing algorithms. SSAM Journal on Computing, 9:808-826, 1980.

J. Csirik and A. van Vliet. An on-line agorithm for multidimensional bin packing. Operations Research
Letters, 13:149-158, 1993.

L. Epstein. Two dimensiona packing: The power of rotation. In Proc. of the 28th International Symposium
of Mathematical Foundations of Computer Science, volume 2747 of Lecture Notes on Computer Science —
LNCS, pages 398 — 407. Springer—Verlag, 2003.

Leah Epstein and Rob van Stee. Thisside up! ACM Transactions on Algorithms, 2(2):228-243, 2006.

W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ¢ in linear time. Combina-
torica, 1(4):349-355, 1981.

K. Jansen and R. SolissOba. An asymptotic approximation algorithm for 3D-strip packing. In Proc. of the
17th annual ACM-S AM Symposium on Discrete Algorithms, pages 143-152, 2006.

Klaus Jansen and Rob van Stee. On strip packing with rotations. In Proc. of the 37th ACM Symposium on
Theory of Computing, 2005.

D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Technology,
Cambridge, Mass., 1973.

C. Kenyon and E. Rémila. A near-optimal solution to atwo-dimensional cutting stock problem. Mathematics
of Operations Research, 25:645-656, 2000.

K. Li and K-H. Cheng. A generalized harmonic agorithm for on-line multidimensional bin packing. TR
UH-CS-90-2, University of Houston, January 1990.

K. Li and K-H. Cheng. On three-dimensional packing. SS/AM Journal on Computing, 19:847-867, 1990.

K. Li and K-H. Cheng. Static job scheduling in partitionable mesh connected systems. Journal of Parallel and
Distributed Computing, 10:152—-159, 1990.

F. K. Miyazawaand Y. Wakabayashi. An agorithm for the three-dimensional packing problem with asymptotic
performance analysis. Algorithmica, 18(1):122-144, 1997.

F. K. Miyazawa and Y. Wakabayashi. Approximation algorithms for the orthogonal z-oriented 3-D packing
problem. SSAM Journal on Computing, 29(3):1008-1029, 2000.

28

[22] F. K. Miyazawaand Y. Wakabayashi. Cube packing. Theoretical Computer Science, 297:355-366, 2003.

[23] F. K. Miyazawa and Y. Wakabayashi. Parametric on-line algorithms for packing rectangles and boxes. Euro-
pean J. Operational Research, 150:281-292, 2003.

[24] F. K. Miyazawa and Y. Wakabayashi. Packing problems with orthogonal rotations. In Proc. of the 6th Latin
American Theoretical INformatics., volume 2976 of Lecture Notes in Computer Science, pages 359-368,
Buenos Aires, Argentina, 2004. Springer-Verlag.

[25] F. K. Miyazawaand Y. Wakabayashi. Two- and three-dimensional parametric packing. Computers and Oper-
ations Research, 34:2589-2603, 2007.

29

