
THE DISTRIBUTER'S THREE-DIMENSIONAL PALLET-PACKING

PROBLEM: A HUMAN INTELLIGENCE-BASED

HEURISTIC APPROACH

THESIS

Erhan BALTACIOGLU, First Lieutenant, TUAF

AFIT/GOR/ENS/01M-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE TNSTITUDE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20010619 005

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U. S.
Government.

AFIT/GOR/ENS/OlM-02

THE DISTRIBUTER'S THREE-DIMENSIONAL PALLET-PACKING
PROBLEM: A HUMAN INTELLIGENCE-BASED

HEURISTIC APPROACH

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillments of the Requirements for the

Degree of Master of Science

Erhan BALTACIOGLU, B.S.

First Lieutenant, TUAF

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/OlM-02

THE DISTRIBUTOR'S THREE-DIMENSIONAL PALLET-PACKING PROBLEM: A

HUMAN INTELLIGENCE-BASED HEURISTIC APPROACH

Erhan BALTACIOGLU,
First Lieutenant, TUAF

Approved:

James T. Moore, Lt Col, USAF (RET) (Advisor) date

Raymond R. Hill, Jr., Lt Col, USAF (Reader) date

Acknowledgements

I would like to thank my thesis advisor, Dr. James T. Moore and my thesis reader

LtCol Raymond Hill for their guidance, support and being fully open to innovative ideas

through this research. Their experience and knowledge helped me to have continuous

progress on my thesis and to develop a successful model.

I also would like to thank the Turkish Air Force for providing me such a quality

Master's program opportunity. I will take full advantage of the experience that I got in

this program, in my whole life to serve my country better.

Mr. and Mrs. Graziers also deserve a lot of thanks for the support they provided

me during these trying months.

Lastly, I am extra grateful to my parents and my family for all the values they

taught me, which helped to complete this program.

IV

Table of Contents

Page

Acknowledgements iv

Table of Contents v

List of Figures vii

List of Tables viii

Abstract ix

Chapter 1 - Background and Statement of the Problem 1-1

1.1 Introduction 1-1

1.2 Background 1-2

1.3 Statement of the Problem 1-4

1.4 Scope and Methodology 1-5

1.5 Overview 1-7

Chapter 2 - Literature Review 2-1

2.1 Introduction 2-1

2.2 Previous Research 2-1

2.3 Existing Commercial Software Packages 2-13

Chapter 3 - Methodology 3-1

3.1 Introduction 3-1

3.2 Overview 3-1

3.2.1 Human Intelligence 3-3

3.2.2 Attributive Memory 3-4

3.3 Input Data 3-4

v

3.4 Data Structure 3-5

3.5 Numerical Limits 3-7

3.6 Flow Chart of The Algorithm 3-7

3.7 How Does The Heuristic Work? 3-10

3.7.1 Preparation For Iterations 3-10

3.7.2 Execution Of An Iteration 3-13

3.8 Output Data 3-19

3.9 Graphical Interface Program 3-21

3.10 Summary 3-21

Chapter 4 - Results 4-1

4.1 Introduction 4-1

4.2 Numerical Tests and Comparisons 4-1

4.3 Summary 4-8

Chapter 5 - Conclusions and Recommendations 5-1

5.1 Research Results 5-1

5.2 Recommendation for Future Research 5-2

Appendix A - Pseudo-codes of The Functions A-l

Appendix B - The C Program Code of the Model B.-1

Appendix C - The C Program Code of the Visualizer G-l

Appendix D - The Test Problems That We Generated D-l

Appendix E - Solutions of B/R Test Sets E-l

Bibliography BIB-1

Vita V-l

VI

List of Figures

Page

Figure 3-1: Input File Format 3-4

Figure 3-2: Flow Chart of the Algorithm 3-9

Figure 3-3: Creating the Boxlist[] Array 3-10

Figure 3-4: Creating the Layers[] Array 3-12

Figure 3-5: Packing a layer 3-15

Figure 3-6: Findbox Function Parameters 3-16

Figure 3-7: Leaving a Gap Unpacked 3-17

Figure 3-8: Layer in Layer Packing 3-18

Figure 3-9: Visudat File Format 3-20

Figure 3-10: Output File Format 3-21

Figure 4-1: Creating Box Sets 4-2

vu

List of Tables

Page

Table 3-1: Key Packing Program Functions 3-15

Table 4-1: Randomly generated problem solutions 4-1

Table 4-2: Specially Generated Problem Solutions 4-3

Table 4-3: Specially Designed MPPP Solutions 4-3

Table 4-4: Solution Summary Of The Given Problem Set 4-4

Table 4-5: Comparisons for the BischoffTRatcliff Examples 4-4

Table 4-6: Comparisons for the Loh/Nee Examples 4-5

Table 4-7: Chen et al. andFaina's Example Box Set 4-6

Table 4-8: Comparisons with Premature Solution Times 4-7

vui

AFIT/GOR/ENS/OlM-02

Abstract

The Distributor's Pallet Packing Problem is to load a set of distinct boxes with

given dimensions on pallets or in containers to maximize volume utilization. This

problem is still in its early stages of research, but there is a high level of interest in

developing effective models to solve this NP-hard problem to reduce the time, energy and

other resources spent in packing pallets.

In its search to improve operations, the Air Force is also making an effort to solve

this problem. Building an analytical model and developing a genetic algorithm approach

have been tried, but the problem requires additional research and there is a need to

produce realistic solutions in a reasonable amount of time.

We develop a special heuristic algorithm and code it in the C programming

language. In our model, we used powerful heuristic tools and dynamic data structure to

mimic human intelligence, providing a new solution approach to pallet packing. We

created another program to visualize packing results. Tests on hundreds of problems

show that our model makes the most of volume utilization in minimal time making it a

leader among presented and published works.

IX

THE DISTRIBUTER'S THREE-DIMENSIONAL PALLET-PACKING

PROBLEM: A HUMAN INTELLIGENCE-BASED

HEURISTIC APPROACH

Chapter 1 - Background and Statement of the Problem

1.1 Introduction

Everyday many items are shipped from one place to another. These items are put

in containers or pallets. To ship more items while spending less energy, time and money,

the items should be packed optimally, or at least near optimally. This problem becomes

even more important when we start to talk about air shipping.

The Air Force uses standard HCU-6/E (463 L) pallets in air shipping. The length

and the width of the pallets are 88 inches (7 feet 4 inches) and 108 inches (9 feet),

respectively. However, only 84 inches of the length and 104 inches of the width are

actually available. Loadmasters are required to leave the outside two inches of the pallet

unpacked so a cargo net can securely fit around the packed boxes. The maximum height

of a pallet is 96 inches (8 feet) for pallets loaded in the main compartment and 76 inches

(6 feet 4 inches) for pallets loaded on the ramp (Taylor, 1994).

By eyeballing the items to be packed, experienced Air Force loadmasters can

efficiently pack Air Force standard HCU-6/E (463L) pallets. However, the questions are

"How efficiently do they pack?" or "Can those items be packed more efficiently and even

provide a reduction in the number of sorties required?" A scientific approach is required

to answer these questions.

For these reasons, the Air Force is in search of a model that will help efficiently

pack the pallets and provide loadmasters with a report stating where the boxes should be

1-1

placed on the pallet to minimize unused space. This will save time and resources. If the

pallets are more efficiently packed, the number of sorties flown may decrease and aircraft

may be freed to carry other items in large-scale mobilizations (Ballew, 2000).

1.2 Background

This research is a follow-on of Ballew's (2000) research. He developed an

integer programming mathematical formulation of a simplified version of the three-

dimensional pallet-packing problem. Some of the problem's constraints were not

included in the formulation. Unfortunately, the solver package found a local optimum to

a simplified and small problem (just 3 boxes). The formulation of a bigger problem with

more boxes is not practical because the number of variables and constraints increase

incredibly fast as the number of boxes increase. Ballew did employ a simple genetic

algorithm to solve a slightly larger but still a small problem (11 boxes) but found no

reasonable solution within 45 minutes.

The Air Force has sponsored research in this area on multiple occasions in search

of a better way to pack the pallets and load the aircraft. These include an early effort by

Taylor (1994), research on an airlift-loading model by Chocolaad (1998) and Romaine

(1999), and a three-dimensional packing problem approach by Manship and Tilley

(1998). None of the developed techniques are able to pack hundreds of various sized

boxes on an HCU-6/E (463 L) pallet while considering realistic constraints. They also do

not have acceptable solution times for this problem.

Bischoff, Janetz, and Ratcliff (1995) developed a three-dimensional heuristic

approach to pack multiple sized boxes on a pallet. Their algorithm packs the boxes in

1-2

layers allowing up to two different box types per layer; however, it gives preference to

layers filled by a single box type. The algorithm did produce stable loads, but as the

number of various sized boxes increased, the packing efficiency declined.

Martello, Pisinger and Vigo (2000) developed a branch-and-bound algorithm to

solve a three-dimensional bin-packing problem. Their solution however, is not strictly

three-dimensional. They first construct bin slices having width W, height H, and

different depths. The slices are then combined into three-dimensional bins. However,

they do not include various important constraints, and they assume that no items can be

rotated. Under these relaxed conditions, their approach had good results.

Real world packing problems are complex and have many constraints. The boxes

have different weights, volumes, and dimensions. The varied dimensions of the boxes

can cause gaps in the usable packing space. Additional wasted space can be caused by

weight balancing and box placement restrictions. Hence, in most cases, the total volume

of the boxes packed is considerably less than the available volume of the container. Most

research has focused on packing a certain number of boxes in a container. But in a real

world problem, this is not always the case. One tries to pack as many boxes as a

container can hold before moving to another container. Because this changes the domain

space, considering this important point changes the approach that must be taken to get a

good solution

The three-dimensional packing problem is a natural generalization of the classical

one- and two-dimensional problems, and therefore it is NP-hard (Reeves 1995). This

means that, in general, optimal solutions are computationally impractical to achieve. For

this reason, most of the studies have focused on the practical aspects of loading a

1-3

container and developing heuristic solutions based on the concept of filling out the

container with boxes organized in layers, walls, and columns. In other cases, two-

dimensional pallet packing heuristics are applied to the general three-dimensional

container-loading problem. These heuristics are, in general, on-line packing algorithms,

which means they pack boxes one-by-one in a given order. More precisely, when the

algorithm is packing a box, it has information only about the boxes previously packed,

and once a box is packed, it cannot be moved to another place. This technique is not

efficient and is also not applicable, when applying the load balance and other constraints.

Since the pallet-packing problem has a large solution space, it is extremely

difficult to prove a solution is the global optimum. Only with many different sets of

boxes can an algorithm be tested and its performance evaluated.

1.3 Statement of the Problem

The problem is a three-dimensional pallet-packing problem. There are basically

two general types of pallet packing problems. They are the "manufacturer's pallet

packing problem" and the "distributor's pallet packing problem." The 'manufacturer's

pallet packing problem' is easier to solve since it seeks the optimum layout of identical

rectangular boxes on a rectangularly shaped pallet.

For the "distributor's pallet packing problem," the objective is to load boxes of

varying dimensions onto as few pallets as possible (Askin and Standridge, 1993). This

problem is more difficult to solve than the manufacturer's problem. For the case in

which only one pallet is loaded, the objective is to minimize unused pallet space since Air

Force 463 L pallets are usually "cubed out" before they are "grossed out" (Taylor, 1994).

1-4

This means that, in general, the total available volume of a pallet is filled before its

weight limit is reached. Most of the time, the items packed are rectangular in shape, and

this property makes the problem easier to solve, compared to trying to pack items with

different shapes.

The problem is to pack as many boxes as possible from a given set of rectangular-

shaped items into a three-dimensional rectangular bin. The objective is to minimize the

unused bin volume while considering many different kinds of constraints. These

constraints are explained in the Scope and Methodology Section. The problem is

strongly NP-hard and extremely difficult to solve in practice (Martello, Pisinger and

Vigo, 2000).

The purpose of this research is to develop a three-dimensional pallet-packing

algorithm and an executable written code employing the developed algorithm.

1.4 Scope and Methodology

In our problem, all items are rectangular boxes. We solve this problem as a

single-pallet packing problem, not as a multiple-pallet packing problem where an entire

aircraft is loaded. Trying to pack all pallets to be loaded on an aircraft is more difficult to

solve. The reason is that the balance of the aircraft has to be considered, and this means

that the problem has to be considered as a single hierarchical problem, instead of being

considered as a combination of several single-pallet packing problems.

Our single pallet problem has many constraint types. The first one is that every

box takes a unique space in the pallet, with no overlapping allowed. A second type

prevents packing beyond the dimension limits of the pallet. Another constraint type

1-5

actually accounts for several different restrictions. The packing must be realistic. It must

be stable. No overhang is allowed when the boxes are packed. For a box to be packed,

its entire base must be on top of either the pallet or other boxes. Boxes can be rotated and

packed with one of six different options. Heavy boxes should be packed below lighter

ones. For flight safety reasons, the Air Force prefers the center of gravity of a loaded

pallet to be within four inches of the center of the pallet. (TASC, 1998)

The problem is extremely hard to solve with all the constraints stated above.

Most approaches start simple and then add other constraints. Some simplifying

assumptions are employed in our approach. In our approach, we initially include the first

two constraint types. So that every box takes a unique space in the pallet (no

overlapping allowed) and packing beyond the dimension limits of the pallet is prevented.

We also allow packing of the boxes in all six orientations. Before a pallet is loaded onto

a plane, the loadmaster secures the pallet by tying down cargo nets around the load.

Thus, in our approach the top of the load is close to level to accomodate the cargo net.

When the cargo net is thrown over a load, level at the top, boxes do not shift or fall.

We also allow overhang and unstable packing to simplify the problem, so some

boxes might not have a complete foundation under them. Since Air Force 463L pallets

are usually "cubed out" before they are "grossed out" (Taylor, 1994), we omitted all

constraints dealing with weight and center of gravity.

We do not employ an existing heuristic technique such as genetic algorithms, tabu

search, or simulated annealing. A genetic algorithm is not sufficient because it does not

appear practical to consider all of the stated constraints while performing a multiple

crossover and expect termination in a reasonable time. Representing a solution in a

1-6

genotype form with hundreds of boxes turns out to be a very long gene, which

excessively increases the storage space and the computational time. Tabu search is not

applicable because one cannot define the move that we need to apply to our problem.

Since the boxes have various dimensions, it is impractical to define the move as a

swapping of locations of two boxes. Simulated annealing is a stochastic heuristic

technique which has been employed by Faina (Faina, 2000) and it is not, in our opinion,

intelligent enough for this problem type. When we try to pack a large number of boxes,

we have a very large solution space and this renders stochastic techniques very

inefficient.

We create our own problem-specific heuristic technique using a composition of

the tools that other heuristic methods use. We develop an adaptive heuristic algorithm

modeling human intelligence. We employ an algorithm that combines an adaptation of

the human intelligence with extensive data analysis applied to the candidate boxes by

taking the advantages of some smart programming tools and data structures. We write

the three-dimensional pallet-packing algorithm in the C programming language. We test

it with several different sets of boxes, and apply a validation and verification process.

1.5 Overview

Chapter Two presents a detailed review of past work and some solution

techniques developed to solve three-dimensional packing problems. Additionally it

presents information about the most promising commercial three-dimensional pallet

packing software packages.

1-7

Chapter Three describes in detail the heuristic algorithm we developed along

with the data structure and other programming tools used. Chapter Four presents

solutions generated by our approach for different sized and different featured problems

while discussing and comparing the qualities of each solution with previously

published solutions. Chapter Five provides conclusions and recommendations for

future work.

1-8

Chapter 2 - Literature Review

2.1 Introduction

The packing problem is a problem with many different variants. The early form

of this type of problem was the one-dimensional packing or partitioning problem, in

which a set of n positive values Wj, e.g. weight values, must be partitioned into the

minimum number of subsets so that the total value in each subset does not exceed a given

bin capacity W.

The two-dimensional bin-packing problem extends the one-dimensional bin-

packing problem. Instead of considering only one set of positive values, we consider two

different sets of positive values, namely two different dimensions, e.g. width and length

of the rectangular pieces to be cut out of big industrial plastic film. As expected, this

problem is harder to solve than the one-dimensional bin-packing problem.

These packing problems are NP-hard problems. NP stands for 'non-deterministic

polynomial'. NP-hard means the solution time increases exponentially as the size of the

problem increases. The three-dimensional bin-packing problem is strongly NP-hard

because the three-dimensional bin-packing problem is a special case of the one-

dimensional bin-packing problem (Martello, Pisinger and Vigo, 2000).

2.2 Previous Research

Packing problems have been considered by a number of researchers, but past

work was largely restricted to the one- or two-dimensional cases. It is widely agreed that,

due to its complexity, any analytical solution to this problem is unlikely in the

2-1

foreseeable future. As a result, most those successful approaches to the problem have

taken the form of heuristics.

The volume of published work discussing three-dimensional solutions is still very

limited due in part, one suspects, to the level of complexity involved, and there appear to

be no clear measures of success (or failure). This might be expected in light of a survey

of such analysis for the two-dimensional problem by Coffman and Shor (1990). This

survey concludes that the field is still in the early stages of development—algorithms and

probability models tend to be simplistic, and estimates of performance are far more

common than exact measures. As the three-dimensional case is less well-studied and

more complex, it is not surprising that the published work generally presents successful

implementations, but it fails to provide the reader with any clear measure of scientific

success. They do, however, provide some interesting insights into the various views on

how successful packings are best achieved. Most of the approaches are based on a basic

wall-building concept although, as described below, this is achieved in a variety of

different ways.

Among the earliest publications are those of Tinarelli and Addonizio (1978) and

George and Robinson (1980). The former of these papers addresses the problem of

minimizing the number of containers used for transporting a given cargo. Identical items

are grouped together and layers are developed. These generally take a simple block form.

George and Robinson (1980), in the first English language paper to directly address the

container loading problem, describe in detail an algorithm developed to load a container

with cargo consisting of a number of distinct types (sizes) of boxes. They utilize a fairly

sophisticated 'wall building' approach in which sections of the container across the full

2-2

width and height are packed. Such an approach in many ways mirrors how the real-life

packing of containers is carried out, and ensures that cargo of the same type is largely

kept together. They describe the implementation of their algorithm for a cargo of 20-box

types. A variety of solutions may be obtained by commencing packing with different box

types and utilizing different orientations. When there are insufficient boxes to complete a

wall utilizing one box type, spaces are generated above and to the right of the wall and

these are packed utilizing a space filling procedure. At all times, the method attempts to

retain a flat forward packing face. The procedure endeavors to keep boxes of like type

together by defining 'open' and 'closed' box types, and it also accounts for box orientation

constraints. Open type boxes are certain box types that are already started to be packed,

while closed type boxes are the boxes of the types that are yet to be used.

Bischoffand Dowsland (1982) had an approach also based on the principle of

filling the container by building layers across its width. However, there are two main

differences between their procedure and that of George and Robinson: first, each layer is

constructed only from a single type of box; and second, the arrangement of boxes within

a layer is determined through a two-dimensional packing procedure, which aims to

maximize the area utilization of the cross-section (i.e. of the rectangle formed by the

width and height of the container). This two-dimensional pallet-packing procedure is a

heuristic and was originally proposed as an approach for calculating efficient layout

patterns for boxes on a pallet.

The filling of spaces in a layer is not considered in the procedure proposed by

Bischoffand Dowsland (1982) and therefore the order in which the layers are formed has

no influence on the packing efficiency achieved. The criterion used to decide the depth

2-3

dimension of a layer, however, is of crucial importance. Each of the three sides of a box

is examined in turn as a potential depth dimension for a layer. With this dimension fixed,

the maximum number of boxes, which can be accommodated in the cross-section, is then

determined by means of the two-dimensional packing routine. In other words, if the

container width and height are denoted by W and H, and the three box dimensions are w,

I and h, respectively, with, say, w being currently considered as the depth of the layer, the

figure calculated is the number of rectangles / X h which fit into the rectangle W X H. If

this is greater than the number of boxes ofthat particular type still to be loaded, a full

layer cannot be formed and the depth dimension concerned is consequently dropped from

further consideration. If, on the other hand, there is more than one possible depth-wise

orientation yielding a complete layer, a choice needs to be made between them. One

obvious criterion for making this choice is the percentage fill of the cross-section (in

either volume or area terms). Following another rationale, however, it might be desirable

to attempt to maximize the number of boxes which are accommodated in complete layers.

It could therefore be advantageous to select the orientation, which leaves the least number

of boxes unpacked once as many identical layers as possible have been constructed.

At some stage in this procedure, a point will be reached where either all boxes are packed

in complete layers or -as is more likely- it is not possible to form further complete layers

of any box type. In this case the remaining boxes are packed using the George and

Robinson (1980) approach.

Mention has already been made of the fact that in many cases several different

variants of the same heuristic can be devised. George and Robinson (1980) explicitly

point out the two alternative rules for choosing among open box types. In a set of trial

2-4

runs discussed in George and Robinson's (1980) paper, the results obtained by using the

second rule -which orders open types according to the same principle as closed types-

were slightly better, but the authors make no general suggestions as to which criterion

should be used for more efficient packings. Test runs with a different priority key for

unopened box types are also referred to in their paper. Here the authors conclude, "that

the original priority structure more often gives the best results". However, no precise

details are given of how much better the results obtained were and, vice versa, how much

worse they were when another ranking rule produced the best solution.

A wall building approach is a natural simplification of the problem. It forms an

important component of the algorithm described by Bischoffand Marriott (1990), and

has been adopted by a number of other authors. Liu and Chen (1981) also present a wall-

based algorithm in which they consider the different ways in which valid box orientations

may be used to maximize the widthwise utilization of the container. Having assigned the

wall base, a similar approach is applied to the container height. Gehring, Menschner and

Meyer (1990) also present a heuristic for packing non-identical items within a container.

They, like George and Robinson (1980), utilize the idea of packing sections of the

container across the full width and height. They utilize an ordering based on decreasing

volume, and having placed the first block in a section (layer), the layer determining box

(LDB), they develop a packing across the container floor first and then upwards. This

tends at first to produce something of a decreasing wedge across the width of the

container. The authors report that good solutions are obtained, but they only present

results for its application on two problems. They too ensure that they retain a flat front

packing wall but differ from George and Robinson (1980) in that they prohibit boxes

2-5

from straddling adjacent layers. As they state, this approach does ensure that cargo

sections can be moved around so as to provide appropriate weight redistribution, but it

will clearly lead in some instances to reduced volume utilization. A further aspect

associated with not allowing boxes to straddle sections is that of load stability. Packings

where boxes do straddle between layers can produce a more cohesive load.

Han, Knott and Egbelu (1989) show that the idea of walls need not be restricted to

the vertical sides of the container. They describe an algorithm in which the container

(major prism) is packed with identical boxes (minor prisms). The algorithm as described

is designed for only a single box type that is constant in both size and shape and no

practical constraints are considered. The approach is to produce packings of L-shaped

modules, with the initial module considered spanning the whole of the container base,

and one of the container walls. The arrangement within the 'L' is determined by dynamic

programming (similar to the approach of Steudel, 1979), which maximizes the edge

utilization. The idea of building walls along any of the six faces of the container is an

interesting one; however, the example they use fits one less box than that obtained by

stacking multiples of two different 'wall' arrangements on the floor of the container. The

weakness in the approach of Han et al. (1989) is a result of maximizing the utilization of

the perimeter of the 'L' module. No evidence is presented to suggest why an L-shaped

module approach should be adopted. (Their example consists of packing a container of

size 48" by 42" and 40" with boxes 11" by 6" by 6". They are able to fit 195 boxes, a

95.16% volume utilization of the container. They quote the US General Services

Administration whose published results (1966) for the same problem only provide 82.5%

utilization).

2-6

Bischoffand Marriott (1990) did a case study on the development of composite

heuristics, without proposing any solution procedures. The case study has reported and

discussed the results of an analysis of 14 heuristic procedures for producing efficient

container loading patterns, based on a two-dimensional packing technique. It has been

shown that the performance of such heuristics may be very domain-dependent and, more

particularly, may vary crucially with the number of different items in a load. The

approach described was demonstrated to be superior, but only for certain types of

problems.

The Bischoffand Marriott study used an idealized problem formulation in which

cargo weight, materials handling aspects and other such factors were not considered and

the objective was defined as minimizing the container length needed to accommodate a

given cargo. The situation handled in the paper is different from merely determining a

feasible arrangement for stowing all of a given cargo. The results of the study suggest

that the most efficient order is likely to depend on the number of different box types in

the" cargo under consideration.

The heuristic method suggested by Haessler and Talbot (1990) is based primarily

on the assignment of boxes to stacks, these then being placed across the container.

Although this is done in part in order to simplify the problem, an approach based upon

sectioning the packing face into two or more components, 'sub-walls', which fall between

the ideas of stack and 'full-walls', may be worth pursuing. Haessler and Talbot's heuristic

also utilizes the fact that they allow the adjustment of order quantities so as to make best

use of the space available.

2-7

Mohanty, Mathur and Ivancic (1994) proposed a multi-dimensional knapsack

problem approach to the three-dimensional packing problem dealing with rilling up

various containers with boxes. Their objective was to maximize utilization of the space

in the containers or the value of the contents of the containers. They present a column

generating procedure which heuristically uses a 'greedy approach' to generate columns

one at a time, without considering any constraints other than overlapping and dimensions

of the containers. Since they use a 'greedy approach', their approach is not robust and is

strongly affected by the number of different items to be packed.

Chen, Lee, and Shen (1995) presented a zero-one mixed integer linear

programming model for the general three-dimensional container-loading problem. The

problem involves packing a set of non-uniform cartons into unequal-sized containers.

The model considers the issues of carton orientations, multiple carton sizes, multiple

container sizes, avoidance of carton overlapping, and space utilization. Several special

container loading problems such as selecting one container from several alternatives,

weight balance, and variable container length were addressed. The modifications to the

general model needed for these situations were also provided. Very small-scale example

problems (with only 6 cartons) were illustrated to validate the models. For further

development, additional constraints can be introduced to the models to include other

concerns in the container-loading problem such as the stability of the packing pattern,

stackability, the integrity of each carton type, and weight restriction. Unfortunately, this

work presented only an analytical model. Using this model, it is impossible to solve a

real world problem, since the number of variables and the number of constraints increase

quadratically as the number of cartons increases (it grows as 2n2, where n is the number

2-8

of cartons). Also, in the conclusion section, the author says that a more efficient solution

procedure is needed to solve large-scale container loading problems.

Bischoff, Janetz and Ratcliff (1995) developed a model producing a high degree

of stability. The basic concept underlying their algorithm is simple: The loading pattern

is constructed from the bottom upwards using single layers of up to two different box

types at a time. The choice of box type(s) and orientation(s) is governed by the resulting

utilization of the loading surface onto which a layer is to be placed. They developed and

tested three algorithms with slight modifications: the first one packs up to two different

box types per layer, the second one packs up to two different box types but of the same

height, and the third one allows packing only one box type per layer. They solved 1400

different problems and compared three algorithms' solution efficiencies. Their most

efficient model was the first one, but as the number of different box types increases, the

solution quality declines.

Terno, Scheithauer, Sommerweiß and Riehme (1997) employed a different

heuristic algorithm. In addition to the dimension and overlapping constraint, they take

total weight limit of the pallet and the stability constraints into account. They basically

employed a layering approach while packing each layer by using a branch and bound

solution method. They solved 700 problem sets among the problems that Bischoff et al.

(1995) solved and made comparisons with past work. Their solutions were better than

Bischoff et al. 's solutions, but since their model was mainly designed for the

"Manufacturer's Pallet Packing Problem", as the number of different items increases, the

volume utilization declines.

2-9

Martello, Pisinger and Vigo (2000) present a branch-and-bound method to solve

the three-dimensional packing problem. They tried to orthogonally pack all the items

into the minimum number of bins. A computational test is presented showing that

problems with the number of boxes less than 30 and 50 were solved. When the average

number of items per bin gets bigger, the problem becomes harder to solve. Another

weakness was that they assumed that the items may not be rotated. They considered only

basic type of constraints (overlapping and bin dimension limits).

Faina (2000) developed a geometrical model that reduces the general three-

dimensional packing problem to a finite enumeration scheme. Cartons were loaded only

on volume restrictions; no other restrictions were considered, and the boxes can assume

any of the six possible orthogonal orientations. He pointed out that adding more

constraints could possibly result in the algorithm giving worse results. He also says that

the use of an approximation algorithm, which derives from a truncation of a global

optimization algorithm, is, from all points of view, better than a mere heuristic procedure,

but he does not substantiate this statement. He developed a simulated annealing

algorithm called zone3d. The results of many statistical tests were given with different

numbers of boxes. He had many approximations in his algorithm and due to these

approximations, he explained that the algorithm is not guaranteed to find a global

minimum of the wasted container volume.

Faina (2000) starts his algorithm with the first box placed at the origin. By

induction, it is supposed that the 1th box has been located; now the method of zones

locates at most 2n+l points where the (i+1)01 box could be located, and this point is

chosen at random; and so on. In this way the initial configuration is obtained. Then the

2-10

algorithm performs a small perturbation to this initial configuration by altering slightly

the order of the boxes, for instance by changing the positions of any two boxes at

random, and by constructing a new configuration.

With up to 32 boxes, Faina could choose cooling schedules which support at best

the quality of the final placings; but with over 64 boxes, the effort to improve the final

placing is too unfavorable from a computational point of view. Therefore, the results

obtained get worse as the number of boxes increases.

Ballew (2000) developed a mathematical formulation similar to the analytical

method of Chen, Lee, and Shen (1995), by using nonlinear integer programming on a

simplified version of this problem. He presented a general mathematical formulation.

Unfortunately, when implemented, the solver package Hyperlingo found a local optimum

to a very simplified and small problem of just three boxes without considering several

important constraints. The formulation of a bigger problem with more boxes was

unrealistic because the number of variables and constraints increase incredibly fast as the

number of boxes increase.

Alternatively, Ballew employed a simple genetic algorithm with single crossover

to solve a small sample (only 11 boxes) problem using the genetic algorithm software

library Genesis. The length of the genotype for such a small problem was 1,232 bits.

Unfortunately, Genesis did not show any signs of convergence in a reasonably amount of

time. Ballew concluded that one reason for this might be that Genesis only allows for

single-point crossover, which is too simplistic for this problem. After 1,000 generations,

which took about 45 minutes, the best solution did not come close to a feasible packing

of 11 boxes (Ballew, 2000).

2-11

Ballew speculated that one potential method for determining the number of

crossover points is to base it on the number of boxes. We doubt this approach would

succeed because, increasing the number of crossover points does not necessarily mean

that a genetic algorithm will provide better solutions. There is always a strong possibility

of achieving a deteriorated solution set if we increase the number of crossover points.

In Chapter One, we pointed out the importance of the efficient packing of a pallet

especially for the Air Force. For those reasons, along with the research done at the Air

Force Institute of Technology (AFIT), the Air Force has contracted research on problem

tthrough Computer Science Corporation (1997) and TASC, Inc. (1998).

In its research, the Computer Science Corporation concluded that an analytical

model giving a global optimum might not be possible, but with heuristic techniques, it is

possible to develop an algorithm giving near optimum solutions in a reasonable time.

Therefore, they stated that a software package using such a heuristic algorithm could be

developed (Computer Science Corporation, 1997).

At the end of TASC's research, they developed a software package in C++

language considering some of the required constraints of the problem to test the

performance of the algorithm they developed. After performing some tests, they

concluded that they could develop a software package including other required

constraints, providing better solutions than those software packages found on the market.

They suggested it would require about six months to develop and the cost of such a

product would be $ 150,000 (TASC, Inc., 1998).

2-12

2.3 Existing Commercial Software Packages

There are a few companies that have developed packing software packages. We

found two companies with commercial products.

One of the companies is CAPE Systems, Inc. (2000) offers two different types of

products. One is called Truckful. The program provides help on planning, creating,

editing, viewing, printing and maintaining Multi-Product load plans for trucks, container

loads and railcars. On their website, it said that the package uses the latest optimization

techniques and can quickly build truck and container loads based on realistic loading

rules and restrictions, but there is no other specific information. We sent an e-mail

asking about the technique they have used to develop the package, but they replied that

all available information is on their web site. Also Truckful recalculates load counts,

load weight, load dimensions and the center of gravity of the total load after any changes

are made to the Load Plan.

Cape Systems, Inc. (2000) other product is Cape Pack'99, which is a packaging

design and pallet loading software. There are basically three main groups in the software

package: Design Group, Arrange Group and Pallet Group. The design group resizes an

existing primary pack or designs a completely new product. Starting with a proposed

size and specifying the scope for dimensional and/or volumetric changes, the program

can establish what it calls the best possible primary pack size. The arrange group creates

new case sizes for existing primary pack sizes. These first two program groups are not

appropriate for our problem.

The third program group in Cape Pack '99 is the one that is related to our

problem; the Pallet Group. It generates a range of numerical and graphical solutions for

2-13

loading objects onto pallets and into trucks. Pallet layers and cases can be added or

deleted and pattern layouts can be rearranged with the drag and drop Layer Editor. This

group also includes Display Pallet for loading different size products onto the same

pallet. Using basic information about the size and weight of the outer packaging, the type

of pallet and the maximum height and weight of the pallet load, these programs generate

numerical and graphical solutions for loading packages onto pallets and into trucks. In

this program group, one can calculate up to three different pallets simultaneously and

work with cases, trays, bags, cylinders, ovals and trapezoidal shapes. This module allows

the user to load products of up to 40 different sizes. Unfortunately, there is a restriction

on the dimensions of the container: each dimension must be less than 100 inches, which

is less than the length of the 463 L pallet of 108 inches. Depending on the number of

different sized boxes to be packed, the solution time is around 1 minute. Although we do

not know what kind of optimization technique it uses, the program uses some algorithms

for packing loads in layers or columns.

Another commercial packing software is Cube-IQ, which is the product of Magic

Logic Optimization, Inc (2000). This software package is a product of Remarkable

Software Company, and from its specifications, it appears it might be of use to the Air

Force.

Cube-IQ is very flexible, and allows the containers (trucks, pallets, crates) to be

either rectangular, or have a non-flat roof or floor, such as sliced-off corners of airline

containers. An overall weight limit is taken into account and the system automatically

handles axle weight limits. There is also an option for the correct positioning of the

center of gravity. Cube-IQ optimizes over multiple containers, optionally in multiple

2-14

sizes. It also allows the items to be rectangular, cylinder and 'sofa' (3D L-shapes). Other

box data include switches for 'turnable', 'allowed on its side', 'allowed on its end', 'bottom-

only', and 'top-only' (possibly in maximum number of layers). Box weight is taken into

account. Cube-IQ supports loading and stacking rules for each orientation of the package

separately. This allows the user to set up more complex loading rules, such as 'flat only if

on top' (for large, but flat boxes), and 'straight up unless on top' (for boxes that can only

support other boxes if they are loaded upright).

It produces an output of the volume and weight capacity utilization for all loaded

containers, and for each loaded package the container number and, within that container,

the 3-D loading coordinates. Cube-IQ has a graphics window in which the user can see

the container as it is loaded. The picture can be rotated, and it will build up one block of

boxes at a time. It gives a print out of complete manifests and loading instructions,

showing for each block of similar boxes exactly where it is to be loaded, including

pictures. Its runtime is fairly short: From one second on a Pentium III-500 PC for a case

with 25 loaded parcels, to one minute to load hundreds of boxes.

It seems like it is a good optimization package but there is little insight into the

techniques Cube-IQ uses to pack items. Since it finds a good solution, not the optimal

solution, it likely uses a heuristic algorithm. It is also not clear whether or not Cube-IQ

ensures heavier boxes are packed towards the bottom.

2-15

Chapter 3 - Methodology

3.1 Introduction

We have developed a robust pallet-packing model that solves challenging

problems in short times while finding near optimal to optimum solutions. In this chapter

we present our model in detail; the input and output data, the data structure, and the

heuristic method that we developed are discussed.

Ravindran et al. (1986) present the principles of modeling. The first four

principles they present are key to successful model building:

1. Do not build a complicated model when a simple one will suffice,

2. Beware of modeling the problem to fit the technique,

3. The deduction phase of modeling must be conducted rigorously, and

4. Models should be validated prior to implementation.

We followed these principles while building our model. We started simple but

challenging enough to solve big problems in a reasonable amount of time while relaxing

some constraints as we pointed out in Section 1.4.

As the second principle advises, we did not try to force fit an existing solution

technique onto our problem. We examined past related work in depth to determine the

efficiencies of existing solution techniques.

3.2 Overview

Based on this start, we developed a special heuristic for our problem and

implemented it in the C programming language. We performed debugging, verification,

3-1

and validation to produce a software package that packs a number of given boxes into a

given container considering only the restrictions presented in Section 1.4. Our model

packs as many boxes as possible in a given container while selecting the suitable boxes

from a given box set. This property makes our approach more realistic. The model is

also able to pack rectangular boxes in any orientation. Actually, our model not only

packs rectangular boxes in any orientation, it also packs according to different

orientations of the pallet. In other words, it builds walls or layers along any of the six

faces of the given container if all three pallet dimensions are not the same.

The model basicly builds a new packing during each iteration. Our approach does

not limit the number of different boxes in each layer. It may pack any number of

different boxes within a layer if their surfaces make a good match to reduce the unpacked

gaps within the layer. This property makes it robust.

Our heuristic employs both layer packing and wall building approaches. There

are some other important methods that our program uses to pack boxes efficiently and

quickly. One of them is packing a sublayer into any of the available unused space in the

last packed layer, which we call a layer-in-layer packing approach. Another new, and the

most important, feature of our heuristic is an adaptation of human behavior and

intelligence to decide which box to pack. Considerable improvement also comes from

the data structure we employ. For verification, validation and debugging purposes, we

also have written a program to visualize the best solution found. Since the output of our

program contains x, y, z coordinates and x, y, z dimensions of the packed orientation of

each packed box, it is difficult to manually check a solution to see if there is any

3-2

constraint violation or numerical error. To make that process easier and to increase the

presentability of solutions, we display the best solution in a box-by-box format.

3.2.1 Human Intelligence

Tabu search developed by Glover (1986) was motivated by Glover's observation

of how people approach problem solving. Faced with the tough pallet-packing problem,

we sought, and found similar motivation. We call our approach an adaptation of human

intelligence because we pack boxes onto the pallet just like a human, from bottom to top

or by building walls. This actually ensures a level top of the load for the cargo net.

Humans prefer to pack boxes to reduce packing surface irregularities. We eyeball the

dimensions of any gap to be packed and pick the most suitable boxes to keep the

topology as smooth as possible. Our heuristic does the same thing. While packing a

layer, it attempts to retain a flat forward packing face. In each step, the dimensiones of

the gaps to be filled are determined, all the eligible boxes and their orientations are

analyzed, and the best fitting box is selected and packed. Before starting to pack any

layer, it analyzes all unpacked boxes to pick the most suitable layer thickness to reduce

wasted volume. However, the selected layer thickness is flexible and might be increased

to accomodate the height of the selected box. Finally, a human will also fill uneven

layers, if possible. This led us to our layer-in-layer approach.

Our layer building technique is so effective that after a few iterations, the model

can be stopped with the solution quality only about 1-8% less than the volume utilization

of the best solution. This feature is effective especially when we deal with a large

number of boxes and computing time is scarce.

3-3

3.2.2 Attributive Memory

An important tool we use is attributive memory. We use attribute-based memory

to avoid using a huge amount of memory to save evey solution produced during the

solution process. Our model keeps only three parameters of the solution found during

iterations. These attributes are the pallet orientation of the solution, another one is the

starting layer thickness value, and the last one is the volume utilization of the solution.

The attributes of the best solution are then used to reconstruct that best solution.

3.3 Input Data

All box dimensions and the pallet dimensions are read from a text file specified

by the user, (.txt ectension assumed). This file must be in the same hard drive folder

where the program is executing. The user must follow the necessary format of the input

file.

Figure 3-1 provides an example of an input file:

E: -=101*1
File Edit Format

104, 96, 84&
1. 70, 104, 24, 4
2. 14, 104, 48, 2 MS
3. 40, 52, 36, 3 jrj

Figure 3-1: Input File Format

In the first line, the three numbers are the x, y, and z dimensions of the pallet.

The order of the dimensions is important because at the end, we convert the output data

format of the best solution to the orientation of the pallet entered in the input file.

3-4

All subsequent lines contain box information. In each line, the first number is the

box label and has no affect on the solution since the program does not take these labels

into consideration. Box labels merely provide an organized way to input the data file.

The second, third, and fourth numbers are the x, y, and z dimensions of each box type,

respectively. Since the program tries all possible orientations of each box, the order of

the box dimensions actually has no importance. The fifth number represents the number

of boxes of the same type. Although commas between the numbers are not required, at

least one space character must delimit the numbers. No error handling is included in the

current program so the input criteria should be followed.

3.4 Data Structure

Data structure is a critical component of any program. Choosing the proper data

structure affects both performance and solution time. For our program, it is important to

reach data quickly We use two different arrays and a double linked list to accomplish

this.

The first array is the Boxlist[] array, which keeps all box dimensions, coordinates

of packed boxes in the container, and other necessary data. There is a total of twelve

fields in each record of this array:

Element Name Description

1. Packst : Status of packing (0: Not packed; 1: Packed),

2. N : The number of boxes that have the same dimensions,

3. Diml : The length of one of the three dimensions,

4. Dim2 : The length of another of the three dimensions,

3-5

Element Name

5. Dim3

6. Cox

7. Coy

8. Coz

9. Packx

10. Packy

11. Packz

12. Vol

Description

: The length of the other of the three dimensions,

: X-coordinate of the location of the packed box,

: Y-coordinate of the location of the packed box,

: Z-coordinate of the location of the packed box,

: X-dimension of the orientation of the box as it has been packed,

: Y-dimension of the orientation of the box as it has been packed,

: Z-dimension of the orientation of the box as it has been packed,

: Volume of the box (Diml*Dim2*Dim3)

We also store the volume of each box so the model does not have to calculate it

each time it needs the box volume. Fields 6-11 are meaningless if Packst value is zero,

but they provide the packing information once the box is packed and Packst is set to one.

Each box has a record in the Boxlist[] array.

The other array is the Layers [] array. This array stores all the different lengths of

all box dimensions. Each Layerdim value in this array represents a different layer

thickness value with which each iteration can start packing. Before starting iterations, all

different lengths of all box dimensions along with evaluation values are stored in this

array. The evaluation values (Layereval values) are calculated by the Listcanditlayers

function as explained in Section 3.6.1. There are two different data fields for each record

in this array:

Element Name Description

1. Layerdim : A dimension value,

2. Layereval : Evaluation weight value for the corresponding layerdim value.

3-6

1. *pre

2. Cumx

3. Cumz

4. *pos

The double linked list we use keeps the topology of the edge of the current layer

under construction. We keep the x and z coordinates of each gap's right corner. The

program looks at those gaps and tries to fill them with boxes one at a time while trying to

keep the edge of the layer even. Each entry in the double linked list has these data fields:

Element Name Description

: Pointer that keeps the address of the previous entry,

: Keeps the x-coordinate of the gap's right corner,

: Keeps the z-coordinate of the gap's right corner,

: Pointer that keeps the address of the following entry.

During execution of each iteration, this double link list may have only one entry,

or may have hundreds of entries based on the box sizes of the box set being packed.

Most of the time, new entries are inserted while useless entries are removed. Therefore, a

double linked list is used to handle these needs dynamically and efficiently.

3.5 Numerical Limits

These model limitations were decided considering both memory limitations for an

average computer memory capacity and the nature of the realistic packing problems:

Maximum number of boxes in a box set : 5000

Number of total different dimension values : 1000

Max dimension length for either pallet or any box : 32,767

All dimension values must be integer numbers.

3.6 Flow Chart of The Algorithm

3-7

Figure 3-2 depicts the flow chart of how the iterations are performed. The

pseudo-codes of the functions are provided in Appendix A. The program itself is in

Appendix B.

START

INITIALIZATION
Get the input
file name

the input file

INPUTBOXLIST gr" !Ta
Read data from ^—I Input File I
the innnt file ^ ~^

Initialize
Variables

EXECITERATIONS
Get one (different)

orientation of the pallet

LISTCANDIDATELAYERS
Create Layersf] Array

QSORT
^Sort Laversfl

Read one value from the
Layersf] array and set it as
the starting layer thickness

I
PACKLAYERdaverthickness)

FINDLAYERfremainpvl
Find the most suitable

layer thickness value by
examining the unpacked

boxes

PACKLAYERCspace^

YES

If the volume utilization is better
than the best so far, keep
the pallet orientation and
the starting layerthickness value.

I
If 'Q' is

YES I tvned.exit

Figure 3-2: Flow Chart of the Algorithm

REPORT

Get the pallet orientation in
which the best solution found.

Get the value from the
Layers[] array and set it as
the starting layer thickness
of the best solution

PACKLAYERClaverthickness')

While finding the best solution,
write all necessary info to the

console and the report file.

FINDLAYERfremainpv)
Find the most suitable

layer thickness value by
examining the unpacked

boxes

Wait for a key hit

3-9

END

Figure 3-2: Flow Chart of The Algorithm

3.7 How Does The Heuristic Work?

3.7.1 Preparation For Iterations

Assume Figure 3-1 presents the problem to solve. Figure 3-3 is the corresponding

BOXLIST[] array.

Variable assignments: XX=104; YY= =96;. ZZ=84 >

Boxlist[X]=(Packst, N,] Diml Dim2, Dim3, Cox, Coy, Coz, Packx, Packy, Packz, Vol)

Boxlist[l]=(0, 4, 70, 104, 24, 0, 0, o, o, o, o, 174720)

Boxlist[2]=(0, 4, 70, 104, 24, 0, 0, o, o, o, o, 174720)

Boxlist[3]=(0, 4, 70, 104, 24, 0, 0, o, o, o, o, 174720)

Boxlist[4]=(0, 4, 70, 104, 24, 0, 0, o, o, o, o, 174720)

Boxlist[5]=(0, 2, 14, 104, 48, 0, 0, o, o, o, o, 69888)

Boxlist[6]=(0, 2, 14, 104, 48, o, 0, o, o, o, o, 69888)

Boxlist[7]=(0, 3, 40, 52, 36, o, 0, o, o, o, o, 74880)

Boxlist[8]=(0, 3, 40, 52, 36, o, 0, o, o, o, o, 74880)

Boxlist[9]=(0, 3, 40, 52, 36, o, 0, o, o, o, o, 74880)

Figure 3-3: Creating the Boxlist[] Array

3-10

After the input process is complete, the model creates a layer thickness array

named LAYERS []. This array contains every unique dimension of the boxes less than

the y dimension of the current orientation of the pallet with their individual evaluation

values. The Layers[] array is created for each orientation of the pallet. Each entry is a

possible layer thickness value for iterations with the current orientation of the pallet to

start the packing.

The evaluation value of a layerdim represents how close all other boxes are to this

layer height if we selected this value as a layer thickness for the packing. The model

calculates these evaluation values as follows:

Retrieve a box and one of its dimensions. Examine the previously set layerdim

values in the array. If this is a different length and less than the y dimension of the

current orientation of the pallet, store the length in a new element in the layerdim array.

Then it goes through every other box retrieving its dimension closest to the layerdim

value, and adds up the absolute value of the differences between that dimension and the

layerdim value. The layerdim value with the smallest layereval weight value is the most

suitable layer thickness value; this value should yield the smoothest layer height.

Continuing our example, calculations for the Layers[] array for the pallet

orientation X=104, Y=96, Z=84 are:

Layers[X]=(Layerdim, Layereval)

Abs(70-70)+Abs(70-70)+Abs(70-70)+Abs(70-48)+Abs(70-48)+Abs(70-52)+Abs(70-52)+Abs(70-52)=98

Layers[l]=(70,98)

Abs(24-24)+Abs(24-24)+Abs(24-24)+Abs(24-14)+Abs(24-14)+Abs(24-36)+Abs(24-36)+Abs(24-36)=56

Layers[2]=(24, 56)

Abs(14-24)+Abs(14-24)+Abs(14-24)+Abs(14-24)+Abs(14-14)+Abs(14-40)+Abs(14-40)+Abs(14-40)=106

3-11

Layers[3]=(14,106)

Abs(48-70)+Abs(48-70)+Abs(48-70)+Abs(48-70)+Abs(48-48)+Abs(48-40)+Abs(48-40)+Abs(48-40)=100

Layers[4]=(48,100)

Abs(40-24)+Abs(40-24)+Abs(40-24)+Abs(40-24)+Abs(40-48)+Abs(40-48)+Abs(40-40)+Abs(40-40)=80

Layers[5]=(40, 80)

Abs(52-70)+Abs(52-70)+Abs(52-70)+Abs(52-70)+Abs(52-48)+Abs(52-48)+Abs(52-52)+Abs(52-52)=80

Layers[6]=(52, 80)

Abs(36-24)+Abs(36-24)+Abs(36-24)+Abs(36-24)+Abs(36-48)+Abs(36-48)+Abs(36-36)+Abs(36-36)=72

Layers[7]=(36, 72)

There are 8 different dimension values but since the dimension value 104 is larger

than the y dimension of the current pallet orientation 96, we do not evaluate it as a

possible layer thickness. After having such a Layers[] array prepared, it is sorted

ascending order with respect to its layereval values:

Layers[X]=(Layerdim, Layereval): Layers[l]=(24, 56)

Layers[2]=(36, 72)

Layers[3]=(52, 80)

Layers[4]=(40, 80)

Layers[5]=(70, 98)

Layers[6]=(48, 100)

Layers[7]=(14, 106)

Figure 3-4: Creating the Layers[] Array

3-12

Since the smallest layereval value potentially may be the most suitable layer

thickness value, having that list sorted and starting to pack from the most promising layer

thickness values would be an important factor to reduce the solution time, especially if

we consider packing a large number of different box types. However, this greedy

approach does not always hold. Sometimes an iteration starting with a larger layerdim

value yields the best solution.

3.7.2 Execution Of Anlteration

Iterations tie closely to the six possible orientations of a pallet. During iterations,

all six orientations of the pallet are packed. Each unique orientation of the pallet is

treated as a pallet to pack. Obviously, if a pallet has three identical dimensions, it has

only one orientation. In general, we have 1,2 or 6 orientations for 1,2 or 3 unique

dimensions, respectively. In each iteration, each orientation of the pallet is packed once

for each element in the Layers[] array. Each iteration begins packing with an initial layer

thickness taken from layerdim value in the Layers[] array. Thus, if we have 7 different

dimension values in our Layers[] array and the pallet has 3 unique dimensions, the

program potentially performs 6*7=42 iterations. Thus, the solution time of our program

is effected by both the number of different dimension values and the number of total

boxes to be packed. The number of different box types does not have a direct affect on

the solution time. It is always possible to terminate the program prematurely by pressing

the 'Q' key whenever a sufficient 'best so far' value has appeared on the console. Since

the layer packing approach of the program is really effective, to get a very high volume

utilization in a very short time is strongly possible.

3-13

Before explaining the details of the heuristic, we need to mention its

computational complexity. If we have n boxes in our box set and d different dimension

values for all boxes, the worst solution time is given by:

0(t)=6ndP(t) (1)

where P(t) is the time spent to find and pack any box, which can be defined:

P(t)=6nE(t) (2)

where E(t) is time to examine an orientation of a box. E(t) depends upon the computer.

We ran all the test problems on a Pentium III 750 MHz computer, and for that computer,

E(t)= 0.18 microseconds (10~6).

Therefore the worst-case solution time performance is:

fl(t)=36 n2 d E(t) (3)

Each iteration starts with the pallet empty, all boxes available, a pallet orientation

and a layer thickness from the Layers[] array. Subsequent iterations change the starting

layer thickness or the pallet orientation. The parameters of the best packing found, based

on volume packed, are saved as the current packing solution.

We perform layer packing or wall building thus reducing the problem to a

systematic series of two-dimensional packing problems. As Figure 3-5 depicts, we pack

along the x- and z-axis. To track the current topology, each right corner coordinate data

is maintained in a doubly linked list. As boxes are packed, this coordinate data will

change. The doubly linked list facilitates the change to the coordinate data. This

approach means we only need to track the current edge being packed, and we avoid

overlaps of layers and pallet edges.

3-14

Each packing action begins by finding the smallest z-value in the coordinate data

list and from that list finding the current gap in the layer to fill. The candidate boxes are

examined to find one that fills the gap, with the correct layer thickness, and to find a box

that fills the gap yet exceeds the current layer thickness by as small an amount as

possible. If no box is found to fill the gap, the gap is ignored. Each box is examined in

each orientation.

*PRE. XCUM ZCUM. *POS
£ o
H
U
£
a A o 35 I J 36
n 20' 33 7,1
< - (4
o-

NULL, 35,
35+33=68,
68+36=104,

x\

NULL

*%•. This is what the Smallestz function finds.

•
■ 2510 35

20
36

>
21 3 3 14

*PRE. XCUM. ZCUM. *POS

NULL, 35, 20
•35+25= 60, 14+10- 24 <- New entry

^68, " 14
104, 21, NULL

X

Figure 3-5: Packing a layer

Table 3-1: Key Packing Program Functions

FUNCTION PURPOSE

Packlayer

Findsmallestz

Findbox

Analyzebox

Update the linked list and the Boxlist[] array as a box is packed.

Determine the gap with the smallest z value in the current layer.

Find the box that best fits to the current gap.

Used by Findbox to analyze box dimensions.

3-15

Checkfound Determine which box to pack.

Execiterations Execute iterations by calling proper functions.

Report Duplicate best-so-far packing.

Outputboxlist Writes packing information to file.

Graphunpackedout Writes packing order for visualization program.

The Findbox function analyzes the unpacked boxes using the Analyzebox

function. For each different orientation of the unpacked boxes, the Analyzebox

parameters are:

Hmx : Maximum available x-dimension of the current gap to be filled.
Hy : Current layer thickness value.
Hmy : Maximum available y-dimension of the current gap to be filled.
Hz : Z-dimension of the current gap to be filled.
Hmz : Maximum available z-dimension to the current gap to be filled.
Diml : X-dimension of the orientation of the box being examined.
Dim2 : Y-dimension of the orientation of the box being examined.
Dim3 : Z-dimension of the orientation of the box being examined.

\
i K

H my

1 Il\ ■ft "t1"" -7< H

^ r* ^i Wm
vHmz \^

* \
z
\

Y
Hmx **k

X

Figure 3-6: Findbox Function Parameters

3-16

Analyzebox seeks, in precedence order, a box with a y-dimension closest to Hy

but not more than Hmy, with an x-dimension closest to, but not more than Hmx, and a z-

dimension closest to Hz, but not more than Hmz. This means it considers the y-

dimension, then among boxes having the same y-dimension, it looks at the x-dimension,

and finally among the boxes having the same y- and x-dimension, it looks at the z-

dimension. It calculates the differences between the gap's dimensions and the box

dimensions for each box and picks the box with the least differences to be the best fitting

one. It also finds a second box with a y-dimension bigger than the current layer

thickness, but closest to the current layer thickness. Boxes that fit and are the proper

thickness (y-values) are packed. Uneven boxes require extra consideration.

We developed a layer-in-layer packing to accommodate packing of uneven

heights. A layerinlayer variable determines if there is any unevenness in the current

packing layer.

If there is no box to fit the current gap, the gap under consideration is left

unpacked. Figure 3-7 depicts this situation.

Top view of a layer:

H
O

S

*PRE. CUMX. CUMZ. *POS

NULL, 35, 20
35+33=68, 14
68122-90, ^Removed
90+14=104, 0, NULL

Remains unpacked.

o
S 35

20
22

21
14,

o
<
OH

33
14

X

Figure 3-7: Leaving a Gap Unpacked

3-17

If it is required; the current layer thickness is increased to the y-dimension of the

taller box found by the Findbox function. When the current layer thickness is increased,

the total increment of the layer, from the beginning to the end of the current layer

packing, is saved in the layerinlayer variable. After finishing the packing of the current

layer, if the layerinlayer variable is greater than zero, another packing within the layer,

for that layerinlayer thickness value, is performed.

Y

X

Figure 3-8: Layer in Layer Packing

Layer-in-layer packing means our approach can utilize more space in the pallet.

Although not used often in the problem set we examined, when used, layer-in-layer

packing gave much better results.

While the Layers[] array entries are used to start the first layer of each iteration,

subsequent layers require calculation to determine good layer thickness values. These

3-18

calculations duplicate these described for the Layers[] array entries, but apply only to the

as yet unpacked boxes. The best layer value is used as the layer thickness for subsequent

packing layers. Layering continues until the pallet can no longer accommodate further

layers. The pallet is then considered packed.

Each packing tracks the volume of boxes packed and volume of boxes not packed

to derive a pallet utilization measure and percentage of packed box volume. Each

packing also has an associated pallet orientation and Layers[] array index. The best

packing found becomes the final solution of the model.

After getting the best solution's parameters, the function Report is called. The

Report function re-performs the packing with the parameters of the best solution found,

but now calls the Outputboxlist function to generate the report file and the

Graphunpackedout function to generate the visualization program input file. Information

about unpacked boxes is included at the end of the report file.

3.8 Output Data

The model has three output streams. One is to the console, another to the report

file, and the final to "visudat" file. Both the console and the report file report the overall

numerical summary of the solution as well as the packing coordinates and the orientation

of each packed box. The list of any unpacked boxes, is appended to the end of the report

file. The dimensions of the pallet along with the packing coordinates and the orientation

of each packed box are output to the file "visudat". The graphical interface program uses

the "visudat" file to visualize the solution.

3-19

The name of the report file uses the same root name of the input file but with the

extension "out". Figure 3-9 presents a "visudat" file format, and Figure 3-10 presents a

report file format.

I Jm visudat - Notepad ifci '•: -|n|x|
File Edit Format Help

84 104 96 j*.

0 0 0 70 104 24 r-
1 70 0 0 14 104 48 jt'jl
1 0 0 24 70 104 24 l|!

0 0 48 70 104 24 if
70 0 48 14 104 48«

0 0 72 70 104 24 zl

Figure 3-9: Visudat File Format

Ü boncs5 - WordPad

File Edit View Insert Format Help

m MM

OlsSlHl #1&| ftl ': I HBM %
*** REPORT ***

ELAPSED TIHE
TOTAL NUMBER OF ITERATIONS DONE

BEST SOLUTION FOUND AT
TOTAL NUHBER OF BOXES
PACKED NUHBER OF BOXES
TOTAL VOLUME OF ALL BOXES
PALLET VOLUME
BEST SOLUTION'S VOLUME UTILIZATION

PERCENTAGE OF PALLET VOLUME USED
PERCENTAGE OF PACKED BOXES (VOLUME)

WHILE PALLET ORIENTATION

Almost 0 sec
18
ITERATION: 4 OF VARIANT: 3
9
6
1063296
838656
838656 OUT OF 838656
100.000000 *
78.873239 H
X= 84; Y- 104; Z= 96

NO: PACKSTA DIMEN-1 DIMEN-2 DIMEN-3 COOR-X COOR-Y COOR-Z PACKEDX PACKEDY PACKEDZ i

70
14
70
70
14
70

104
104
104
104
104
104

24

48
24
24

48
24

0
0

24
48
48
72

0
70
0
0

70
0

104
104
104
104
104
104

24
48
24
24

48
24

70
14
70
70

14
70

7 40
8 40

9 40

52
52

52

*** LIST OF UNPACKED BOXES ***

36
36

36 Ji

Figure 3-10: Output File Format

3.9 Graphical Interface Program

The graphical interface program, which is available in Appendix C, aids

verification, checks for possible errors, and promotes the presentability of the best

solution found. It reads the pallet dimensions and the box packing information from the

"visudat" file and displays them on the screen interactively starting from the far end

towards the user. This ensures a clear view of the box as it is packed. The program

scales all dimension values and corresponding coordinates to properly fit the screen.

3.10 Summary

We developed a very efficient and robust heuristic technique to solve the three-

dimensional pallet-packing problem. We implemented it in a program and our testing

shows good results. In Chapter Four, we present the test problem solutions and some

comparisons with other pallet-packing approaches.

3-21

Chapter 4 - Results

4.1 Introduction

We employed several different techniques to test our model. We created special

test problem sets and examined performance on readily available, standard problem sets.

In this chapter, we present testing results to learn about the important characteristics of

our model.

4.2 Numerical Tests and Comparisons

To test our model, we created many different box sets. Prior works tested their

methods with randomly generated box sets. While we also used random problems, it is

impossible to evaluate the solution qualities of these random problems because the

optimum solution is unknown. Thus, we developed a technique to generate problem sets

with known solutions.

We used the Exel software to produce uniformly distributed random dimension

values between certain numerical limits and then we arranged the box quantities to be

close to the pallet volume. Table 4-1 summarizes a sample of those randomly generated

problem solutions.

Table 4-1: Randomly generated problem solutions

Box Set # of Boxes # of Box Types % Vol. Utilization Solution Time(sec)

Set#l 307 5 89.5 2
Set #2 1728 5 97.5 189
Set #3 637 11 92.4 44
Set #4 1493 21 96.4 255
Worst Case(#5) 31 31 68.7 <1

4-1

For all randomly generated problems, the pallet dimensions are 104, 96, 84. The

volume utilization of the pallet is fairly high, but the optimum solutions are unknown.

We do know our solution times are quite low. In the very last line of Table 4-1, we

present results for a problem that is extremely difficult to solve because all boxes are

unique. The volume utilization is very low, but seems reasonable given the unique size

of each box. We also obtained the solution very quickly. We packed 10 different

realizations of the difficult problem type and found the worst-case solution was greater

than 65%.

Since we wanted to evaluate our solutions by comparing them with optimal

solutions, we developed a technique to generate problem sets. In our technique, we

divide the container into many different sized boxes. These boxes can then be listed in

any order, even rotated, to yield a packing problem with a known, optimal solution of

100% pallet volume utilization. All problem sets that we generated are in Appendix D.

■■l

Figure 4-1: Creating Box Sets

The box sets that we generated with this problem generation technique and our

solutions are presented in Table 4-2. Overall, our method does quite well.

4-2

Table 4-2: Specially Generated Problem Solutions

Box Set # of Boxes # of Box Types % Vol. Utilization Solution Time(sec)

Set #6 6 2 100 <1
Set #7 10 3 100 <1
Set #8 12 4 100 <1
Set #9 18 6 89.7 <1
Set #10 86 7 91.6 <1
Set #11 39 15 84.5 1

We developed our model as a distributor's pallet packing problem but wanted to

test it on the manufacturer's pallet packing test problems (MPPP). Since the distributor's

pallet packing problem is much harder than the MPPP, we expected our model to yield

very good results on the MPPP. We created these problem sets using the same problem

generation technique and and solved the problems. Our results are presented in Table 4-

3. As expected, the model does very well on the MPPP.

Table 4-3: Specially Designed MPPP Solutions

Box Set # of Boxes # of Box Types % Vol. Utilization Solution Time(sec)
Set #12 576 1 100 4
Set #13 1152 1 100 18
Set #14 4992 1 100 228
Set #15 1152 2 100 8
Set #16 2784 2 98 315

There are also 700 problems generated by Bischoff e* al. (1995) readily available

on the Imperial College Management School web page (2001). These problems are

randomly generated and come in 7 files. Each of the 100 problems in 7 files contain 3, 5,

4-3

8,10,12,15, and 20 box types, respectively. All problems use the same pallet

dimensions of 587,233, and 220. We solved these 700 problems and obtained the results

presented in Table 4-4. Solution detailes are presented in Appendix E.

Table 4-4: Solution Summary Of The Given Problem Set

Box
Set

of box
types (n)

of Boxes % of Pallet Utilization Utilization
Std. Dev.

Solution Time(sec)

min ave max min ave max min ave max

BR-3 3 69 150 476 78.9 89.0 95.3 2.93 <1 1.07 12
BR-5 5 81 137 266 84.8 89.0 94.0 2.03 <1 1.23 5
BR-8 8 80 134 232 84.5 88.4 92.1 1.56 <1 1.85 5
BR-10 10 75 133 233 84.4 88.2 91.9 1.52 1 2.19 6
BR-12 12 84 133 218 84.0 87.6 89.9 1.33 1 2.73 8
BR-15 15 85 131 203 84.3 87.4 91.3 1.28 1 3.39 9
BR-20 20 90 130 172 84.3 87.1 90.2 1.15 2 4.47 9

We compared our solutions with the solutions of Bischoff, and Ratcliff (1995)

(denoted by B/R), and Gehring and Bortfeld (1996) (denoted by G/B); Bortfeld and

Gehring (1997) (denoted by B/G); Terno, Scheithauer, Sommerweiß, and Riehme (1997)

(denoted by T/S/S/R) in Table 4-5. Information about the G/B and the B/G results come

from the Terno, et al. (1997). We know that G/B uses a Genetic Algorithm model and

B/G uses a Tabu Search model.

Table 4-5: Comparisons for the Bischoff/Ratcliff Examples

Set#
B/R G/B B/G T/S/S/] R OURS

min ave max min ave max min ave max min ave max min ave max

BR-3 73.7 85.4 94.4 76.7 85.8 94.3 78.7 89.0 95.7 75.7 89.9 95.9 78.9 89.0 95.3
BR-5 73.8 86.3 93.8 78.4 87.3 95.2 79.7 88.7 95.0 81.9 89.6 94.7 84.8 89.0 94.0

BR-8 75.3 85.9 92.6 81.1 88.1 92.9 82.4 88.2 94.0 83.2 89.2 93.0 84.5 88.4 92.1

BR-10 78.4 85.1 90.1 82.7 88.0 91.6 80.9 87.4 92.0 83.1 88.9 92.7 84.4 88.2 91.9

BR-20 75.7 83.0 88.3 84.4 87.7 90.7 79.9 83.9 88.4 80.6 86.3 89.0 84.3 87.1 90.2

4-4

w

The best competitor to our model seems to be T/S/S/R. However, it appears that

our model is more dependable. All of the minimum values of our results are 1 to 4%

better than T/S/S/R minimum values while average and maximum values are very

comparable. Solution time is another important factor of interest. Our model solves any

of 700 box sets in 1 to 12 seconds on a Pentium III 750 MHz computer. The T/S/S/R

model uses 150 to 600 seconds on a PentiumPro 200 MHz computer. Their computer is

about 4 times slower than ours, but our solution time is about 50-100 times faster than

theirs. Thus, it appears we may have some processing time advantage.

Another box set has been used by Loh and Nee (1992) (denoted by L/N); Ngoi,

Tay, and Chua (1994) (denoted by N/T/C); Bischoff, Janetz, and Ratcliff (1995) (denoted

by B/J/R); Bischoff, and Ratcliff (1995) (denoted by B/R); Gehring and Bortfeld (1996)

(denoted by G/B); Bortfeld and Gehring (1997) (denoted by B/G); Terno, Scheithauer,

Sommerweiß, and Riehme (1997) (denoted by T/S/S/R). In the Table 4-6 we compare

the volume utilization percentages for 4 instances in that problem set. The other 11

instances are not presented since all boxes could be packed in the container by our model.

Again our results compare favorably.

Table 4-6: Comparisons for the Loh/Nee Examples

Set# #of
Boxes

of Box
Types

L/N
1992

N/T/C
1994

B/J/R
1995

B/R
1995

G/B
1996

B/G
1997

T/S/S/R
1997

OURS
2001

Solution
time (sec)

LN#2 200 8 76.8 80.7 89.7 90.0 89.5 96.6 93.9 93.3 3
LN#6 200 8 88.6 88.7 89.5 83.1 91.1 91.2 91.6 91.7 3
LN#7 200 8 78.2 81.8 83.9 78.7 83.3 84.7 84.7 84.7 1
LN-#13 130 7 77.0 84.1 82.3 78.1 85.6 84.3 85.1 85.6 <1

4-5

In Section 2.2, we stated that the model developed by Han et al. (1989) was able

to pack 195 boxes of 11" by 6" by 6" into a 48" by 42" by 40" container. Their volume

utilization of the container was 95.16%. They also quoted the US General Services

Administration whose published results in 1966 for the same problem only provide

82.5% utilization. We solved the same problem. Our model packed 196 boxes, with a

utilization of 96.25% in less than a second.

Another test problem that we solved was created and solved by Chen et al. (1995)

while developing an analytical model. Faina (2000) solved the same problem by using a

special simulated annealing algorithm. They both solved this small instance with some

fixed orientation of each box. The problem is provided in Table 4-7.

Table 4-7: Chen et al and Faina's Example Box Set

Box
Number

Dimensions Of Boxes
X y z

1 25 8 6
2 20 10 5
3 16 7 3
4 15 12 6
5 22 8 3
6 10 20 4

They were able to pack these six boxes into a container with dimensions of 10,

20, 35, by packing the boxes in certain defined orientations. Their solution is the optimal

solution. Since our model rotates each box, we tested our model on this small problem

4-6

allowing foil rotation of all boxes. We actually improved the packing using a container

with dimensions of 10,20, 33.

We wanted to make further comparisons with Faina's (2000) solutions, but the

problem sets were not presented in the paper. He provides but emphasizes that beyond

64 boxes, the effort to improve the final placing is too expensive computationally.

Therefore it is hard to make further comparisons. Faina also states that the results

obtained are worse as the number of boxes increases. With our method, we see that

increasing the number of the boxes has little affect on the solution quality, but it affects

solution time.

Recall our model's worst case solution time formulation with E(t)=0.18

microseconds (10"6) for our computer, a Pentium III 750 MHz, 256 Mb, Windows 2000

Professional. For Problem #2 presented in Table 4-1; with n=1728 and d=15, fl(t)=290

seconds, greater than actual solution time of 189 seconds. For very large problems of say

5000 boxes with 100 box types, d(t)=16200 seconds=4.5 hours. Since these times are

large, we examined the impact of stopping our model early after a few iterations. A

comparison is shown in Table 4-8. Notice our approach gives very good, possibly

acceptable, results after just a couple of iterations.

Table 4-8: Comparisons with Premature Solution Times

BOX SET
NUMBER
OF BOXES

INSET

SOLUTION
UTILIZATION

FULL %

FULL
SOLUTION
TIME (sec)

SOLUTION
UTILIZATION

PREMATURE %

PREMATURE
SOLUTION
TIME (sec)

Set #2 1728 97.5 189 93.2 6
Set #3 637 92.4 44 87.4 3
Set #4 1493 96.4 255 88.2 4
Set #12 576 100 4 93.8 1
Set #13 1152 100 18 99.5 2
Set #14 4992 100 228 97.8 93
Set #15 1152 100 8 98.2 2
Set #16 2784 98 315 91.7 13
BR-3 #65 476 94.4 12 92.9 1

4-7

BR-5 #39 266 93.8 5 89.5
BR-8 #39 232 89.7 5 85.9
BR-10 #56 233 91 6 89
BR-12 #56 218 88.1 8 86
BR-15 #13 203 88.4 9 85.2
BR-20#51 166 88.1 9 86

4.3 Summary

An algorithm is an abstraction best evaluated by experimenting with a specific

implementation. A heuristic is a special type of algorithm. We implemented our packing

heuristic and solved various sets of problems. Our tests demonstrate the validity of the

model and its performance. Our model proved to be an innovative and quick running

algorithm, producing extremely good results.

4-8

Chapter 5 - Conclusions and Recommendations

5.1 Research Results

This research developed a solution approach to the three dimensional pallet-

packing problem. Ballew (2000) developed a mathematical formulation and explored a

heuristic approach using a genetic algorithm. His research found that it is not practical to

try to solve this problem by using an analytical approach. Based on not only Ballew but

the research of others, the complexity of the three-dimensional pallet-packing problem

appears to rule out any type of search heuristic such as genetic algorithms or simulated

annealing. These problems do not exploit enough problem-specific knowledge.

We built a new heuristic method. Our heuristic technique tries to mimic human

intelligence and behavior, in particular how one would build layers, fill gaps in a layer,

and examine various box orientations. We wrote a C program to test our algorithm,

developed another program to visualize the best solution found, and used attributive

memory and dynamic data structures, such as arrays and double linked lists, to improve

processing efficiency.

Our heuristic not only solves large problems in a small amount of time, but it also

gives very good or optimal solutions. It is also robust and high solution quality is not

affected by different problem characteristics. We make these claims based on empirical

results from literature problems, test bank problems, and problems we created with a

known optimal solution.

5-1

5.2 Recommendation for Future Research

Our research showed us that powerful heuristic techniques would solve the

distributor's three-dimensional pallet packing problem in a reasonable amount of time.

Thus, we recommend working on employing other powerful heuristic tools or using those

stated tools more extensively.

The primary objective should be adding other constraints rather than increasing

the volume utilization of the pallet. The first essential constraint to add would be the load

stability. Other necessary constraints such as loading boxes in some certain orientations

and weight and balance should be added one by one.

Another avenue is to implement our heuristic within some other approach to solve

multi-pallet packing problem. As Choocolaad (1998) and Romaine (1999) mentioned,

the multi-pallet problem is important for Air Force mobility and deployment planning

studies.

A final avenue of research might be to add some sort of local improvement

heuristic. Given some solutions, based on some pallet orientation and layer thickness,

can minor changes yield better packings.

5-2

Appendix A - Pseudo-codes of The Functions

MAIN

Perform initialization by calling INITIALIZE();
Get time(START);
Execute iterations and find the parameters of the best solution by calling

EXECITERATIONSO;
Get time(FINISH);
Using the parameters found, pack the best solution found, report to the console

and to an output text file by calling REPORT();
Wait until a keystroke entered by the user;
End;

FUNCTION INITIALIZEO

Get the input FILENAME from the user;
Get the pallet and box set data entered by the user from the input file by calling the

function INPUTBOXLISTO;
Calculate the volume of the pallet;
Calculate the total volume of all boxes;
Create a node and call it SCRABFIRST. Each of these double linked list nodes keeps X
and Z coordinates of each gap in the layer currently being packed.
SCRABFIRST.PRE=NULL;SCRABFIRST.POS=NULL;
Initialize variables those keep the best so far and its parameters.

FUCTION INPUTBOXLISTO

If exists, open the file FILENAME;
Else {Tell the user "Cannot open the file FILENAME"; end;}

Read the first line of the input file and set the pallet dimension variables XX, YY, ZZ;
Read every other lines in the input file and fill each field in the array BOXLIST[].
Now the variable TBN is already set to the total number of boxes input from the file;
Close the file FILENAME;
RETURN;

A-l

FUNCTION EXECITERATIONSO;

ForVARIANT=lto6{
For each value of VARIANT get a different orientation of the pallet to the

variables PX, PY, PZ;
List all possible candidate values by calling LISTCANDITLAYERS();
Sort the array LAYERS in respect to its LAYEREVAL fields in increasing order

by using QSORT;
For each layer values in the LAYERS[] array, perform another iteration starting

with that layer value as the starting layer thickness:
For LAYERSINDEX=1 to LAYERLISTLEN {

Get the first value of the LAYERS array as the starting
LAYERTHICKNESS value:
LAYERTHICKNESS=LAYERS[LAYERSINDEX].LAYERDIM

Set all boxes' packed status to 0:
For X=l to TBN do BOXLIST[X].PACKST=0;

do{
Set the variable that shows remaining unpacked potential second

layer height in the current layer: LAYERINLAYER=0;
Set the flag variable that shows packing of the current layer is

finished or not: LAYERDONE=0;
Call PACKLAYERO, to pack the layer, and if a memory error is

responded, exit the program;
If there is a height available for packing in the current layer,

perform another layer packing in the current layer:
If LAYERINLAYER/O do{

Get the height available for packing in the current layer as
the layer thickness to be packed:
LAYERTHICKNESS=LAYERINLAYER;

Call PACKLAYERO, to pack the layer, and if a memory
Error is responded, exit the program;

}
Call FINDLAYER(REMAINPY) to determine the most suitable

layer height fitting in the remaining unpacked height of the
pallet;

} While PACKINGS;
If the volume utilization of the current iteration is better than the best so

far, and the iterations were not quit, keep the parameters:
(Pallet orientation, utilization, and the index of the initial layer
height in the LAYERS array);

If a hundred percent packing was found, exit doing iteration and
RETURN;
}

A-2

FUNCTION LISTCANDITLAYERSO;

LAYERLISTLEN=0;
ForX=ltoTBN{

Get each dimension of each box, one at a time by doing:
ForY=lto3 {

If Y=l do {
EXDIM=BOXLIST[X] .DIM1;
DIMEN2=BOXLIST[X].DIM2;
DMEN3=BOXLIST[X].DIM3;

}
If Y=2 do {

EXDIM=BOXLIST[X].DIM2;
DMEN2=BOXLIST[X].DIMl;
DIMEN3=BOXLIST[X].DIM3;

}
If Y=3 do {

EXDIM=BOXLIST[X].DIM3;
DIMEN2=BOXLIST[X].DIMl;
DMEN3=BOXLIST[X].DIM2;

}
If any of the dimensions of the box being examined cannot fit into the

pallet's respective dimensions, exit this loop and continue with the
next loop;

If EXDIM is the same as any of previously examined dimension lengths,
exit this loop and continue with the next loop;

Set the evaluation value of the EXDIM to 0 by doing LAYEREVAL=0;
ForZ=ltoTBNdo{

Get the closest dimension value of each box to the EXDIM by
looking at the absolute values of differences between each
dimension and EXDIM, and selecting the smallest value;
and set the variable DIMDIF to this value;

Add those values cumulatively by doing:
LAYEREVAL=LAYEREVAL+DIMDIF;

}
LAYERLISTLEN=LAYERLISTLEN+1;
LAYERS[LAYERLISTLEN].LAYEREVAL=LAYEREVAL;
LAYERS[LAYERLISTLEN].LAYERDIM=EXDIM;

}
} -
RETURN;

A-3

FUNCTION COMPLAYERLIST(i j);

This function is required for the compiler built in function QSORT().
It returns the difference between the values i and j.

FUNCTION PACKLAYERO;

If LAYERTHICKNESS=0 do {PACKINGS; RETURN;};
Initialize the first and only node to the layer's X and Z values:

SCRAPFIRST.CUMX=PX;SCRAPFIRST.CUMZ=0;
Perform an infinite loop unless 'Q' is typed to quit {

Check the keyboard input, if 'Q' is hit, exit the loop and RETURN;
To find the gap with the least Z value in the layer call FINDSMALLEST();

SITUATION-1:
If there is no box on both sides of the gap do {

Calculate the gap's X and Z dimensions;
To find the most suitable boxes to the gap found, by looking at;

the X-dimension of the gap: LENX,
layerthickness of the gap: LAYERTHICKNESS,
maximum available thickness to the gap: REMAINPY,
maximum available Z dimension to the gap: LPZ;
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY, LPZ,
LPZ);

Check on the boxes found by the FINDBOX() function by calling
CHECKFOUNDO;

If the packing of the layer is finished, exit the loop;
If the edge of the layer is evened, go to the first line of the next loop;
Add a new node to the linked list showing the topology of the edge of the

currently being packed layer after packing a new box, and set all
the necessary variables and pointers properly;

To check the hundred percent packing condition,
call VOLUMECHECKO;

}

A-4

SITUATION-2:
If there is no box on the left side of the gap do {

Calculate the gap's X and Z dimensions;
To find the most suitable boxes to the gap found, by looking at;

the X dimension of the gap: LENX,
layerthickness of the gap: LAYERTHICKNESS,
maximum available thickness to the gap: REMAINPY,
the Z dimension of the gap: LENZ,
maximum available Z dimension to the gap: LPZ;
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY,
LENZ, LPZ);

Check on the boxes found by the FINDBOX() function by calling
CHECKFOUNDO;

If the packing of the layer is finished, exit the loop;
If the edge of the layer is evened, go to the first line of the next loop;
Set all the necessary variables and pointers properly to represent the

current topology of the edge of the layer that is currently being
packed;

If the edge of the current layer is evened, set all the necessary variables
and pointers properly and dispose the unnecessary node;

To check the hundred percent packing condition, call VOLUMECHECKO

}

SITUATION-3:
If there is no box on the right side of the gap do {

Calculate the gap's X and Z dimensions;
To find the most suitable boxes to the gap found, by looking at;

the X dimension of the gap: LENX,
layerthickness of the gap: LAYERTHICKNESS,
maximum available thickness to the gap: REMAINPY,
the Z dimension of the gap: LENZ,
maximum available Z dimension to the gap: LPZ;
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY,
LENZ, LPZ);

Check on the boxes found by the FINDBOXO function by calling
CHECKFOUNDO;

If the packing of the layer is finished, exit the loop;
If the edge of the layer is evened, go to the first line of the next loop;
Set all the necessary variables and pointers properly to represent the

current topology of the edge of the layer that is currently being
packed;

If the edge of the current layer is evened, set all the necessary variables
and pointers properly and dispose the unnecessary node;

To check the hundred percent packing condition, call VOLUMECHECK()

}

A-5

SITUATION-4: IF THERE ARE BOXES ON BOTH SIDES OF THE GAP

SUBSITUATION-4A
If the Z dimensions of the gap is the same on both sides {

Calculate the gap's X and Z dimensions;
To find the most suitable boxes to the gap found, by looking at;

the X dimension of the gap: LENX,
layerthickness of the gap: LAYERTHICKNESS,
maximum available thickness to the gap: REMAINPY,
the Z dimension of the gap: LENZ,
maximum available Z dimension to the gap: LPZ;
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY,
LENZ, LPZ);

Check on the boxes found by the FINDBOX() function by calling
CHECKFOUNDO;

If the packing of the layer is finished, exit the loop;
If the edge of the layer is evened, go to the first line of the next loop;
Set all the necessary variables and pointers properly to represent the

current topology of the edge of the layer that is currently being
packed;

While updating the edge of topology information, if a part of the topology
is evened, dispose unnecessary nodes, and update the others
properly;

While updating the edge of topology information, if another gap is added
to the topology, add a new node to keep this gap, and update the
others properly;

To check the hundred percent packing condition,
call VOLUMECHECKO;

}

A-6

SUBSITUATI0N-4B
If the Z dimension of the gap is different on both sides {

Calculate the gap's X and Z dimensions;
To find the most suitable boxes to the gap found, by looking at;

the X dimension of the gap: LENX,
layerthickness of the gap: LAYERTHICKNESS,
maximum available thickness to the gap: REMAINPY,
the Z dimension of the gap: LENZ,
maximum available Z dimension to the gap: LPZ;
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY,
LENZ, LPZ);

Check on the boxes found by the FINDBOX() function by calling
CHECKFOUNDO;

If the packing of the layer is finished, exit the loop;
If the edge of the layer is evened, go to the first line of the next loop;
Set all the necessary variables and pointers properly to represent the

current topology of the edge of the layer that is currently being
packed;

While updating the edge of topology information, if another gap is added
to the topology, add a new node to keep this gap, and update the
others properly;

To check the hundred percent packing condition,
call VOLUMECHECKO;

}

A-7

FUNCTION FINDLAYERO;

Set the overall evaluation value to a big number: EVAL= 1000000;
ForX=ltoTBN{

If the box number X has already been packed continue with the next loop:
If BOXLIST[X].PACKST*0 continue;

Get each dimension of each box, one at a time by doing:
ForY=lto3 {

If Y=l do {
EXDIM=B0XLIST[X].DIM1;
DMEN2=BOXLIST[X].DIM2;
DMEN3=BOXLIST[X].DIM3;

}
If Y=2 do {

EXDIM=BOXLIST[X].DIM2;
DEVIEN2=B0XLIST[X].DIM1;
DIMEN3=BOXLIST[X].DIM3;

}
If Y=3 do {

EXDIM=BOXLIST[X].DIM3;
DMEN2=B0XLIST[X].DIM1;
DMEN3=BOXLIST[X].DIM2;

}
If any of the dimensions of the box being examined cannot fit into the

pallet's respective dimensions, exit this loop and continue with the
next loop;

Set the evaluation value of the EXDIM to 0 by doing LAYEREVAL=0;
ForZ=ltoTBNdo{

Get the closest dimension value of each box to the EXDIM by
looking at the absolute values of differences between each
dimension and EXDIM, and selecting the smallest value;
and set the variable DIMDIF to this value.

Add those values cumulatively by doing:
LAYEREVAL=LAYEREVAL+DMDIF;

}
If the dimension that has just been examined has a smaller evaluation

value, keep that dimension:
If (LAYEREVAL<EVAL) do { EVAL=LAYEREVAL;

LAYERTHICKNESS-EXDIM};
}

}
RETURN;

A-8

FUNCTION FINDBOX (HMX: Maximum X dimension of the gap;
HY: Y dimension of the gap; HMY: Maximum Y dimension of the gap;
HZ: Z dimension of the gap; HMZ: Maximum Z dimension of the gap);

Set all evaluation values to big numbers:
For the box type fitting in the current layerthickness:

BFX=32767; BFY=32767; BFZ=32767;
For the box type that cannot fit in the current layerthickness, but the closest one:

BFX=32767; BFY=32767; BFZ=32767;
For Y=l to TBN with step BOXLIST[Y].N do{ (Examines only different boxes)

If the box that is being examined has been packed before, continue with the next
loop;

X=The index of the box that has not been packed before among a certain type of
box;

Analyze all six possible orientations of the box being examined:
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIMl,

BOXLIST[X].DIM2, BOXLIST[X].DIM3);
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIMl,

BOXLIST[X].DIM3,BOXLIST[X].DIM2);
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIM2,

BOXLIST[X].DIMl, BOXLIST[X].DIM3);
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIM2,

BOXLIST[X].DIM3,BOXLIST[X].DIMl);
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIM3,

BOXLIST[X].DIMl,BOXLIST[X].DIM2);
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIM3,

BOXLIST[X].DIM2, BOXLIST[X].DIMl);
}
RETURN;

A-9

FUNCTION ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, DIM1, DIM2, DIM3);

(If all dimensions of the given box fit the maximum space in the gap:)
If (DIMK=HMX and DIM2<=HMY and DIM3<=HMZ) do{

(If the y-dimension of the current orientation of the box fits to the gap's
layer thickness:)

If(DIM2<=HY)do{
If the current box is a better fit in respect to its y-dimension compared to

the one selected before, keep the index of the current box in the
variable BOXI;

If the current box has the same y-dimension as the y-dimension of the
selected one before, and the current box is a better fit in respect to
its x-dimension compared to the selected one before, keep the
index of the current box in the variable BOXI;

If the current box has the same y and x-dimensions as the y and x
dimensions of the selected one before, and the current box is a
better fit in respect to its z-dimension compared to the one selected
before, keep the index of the current box in the variable BOXI;

}
(If the y-dimension of the current orientation of the box is bigger than the gap's

layer thickness:)
If(DIM2>HY)do{

If the current box is a better fit in respect to its y-dimension compared to
the one selected before, keep the index of the current box in the
variable BBOXI;

If the current box has the same y-dimension as the y-dimension of the
selected one before, and the current box is a better fit in respect to
its x-dimension compared to the selected one before, keep the
index of the current box in the variable BBOXI;

If the current box has the same y and x-dimensions as the y and x-
dimensions of the selected one before, and the current box is a
better fit in respect to its z-dimension compared to the one selected
before, keep the index of the current box in the variable BBOXI;

}
}
RETURN;

A-10

FUNCTION FINDSMALLESTO;

Get the first node of the linked list representing the edge topology of the current layer:
SCRAPMEMB=SCRAPFIRST;

Assign it to the variable which will keep the node with a smallest z-value:
SMALLESTZ=SCRAPMEMB;

While SCRAPMEMB.POS^NULL do {
If (SCRAPMEMB.POS).CUMZ < SMALLEST.CUMZ then

SMALLESTZ=SCRAPMEMB.POS;
SCRAPMEMB-SCRAPMEMB.POS;

}
RETURN;

FUNCTION CHECKFOUND ();

(If a box fitting in the current layer thickness has been found, keep its index and
orientation for packing:)

If BOXI/0 then do{ CBOXI=BOXI; CBOXX=BOXX; CBOXY=BOXY;
CBOXZ=BOXZ};

Else{
If a box with a bigger y-dimension than the current layer thickness has been found

and the edge of the current layer is even then select that box and set
LAYERINLAYER variable for a second layer packing in the current layer
and update the LAYERTHICKNESS=BBOXY;

Else {
If there is no gap in the edge of the current layer, packing of the layer is

done:LAYERDONE=l;
Else: Since there is no fitting box to the currently selected gap, skip that

gap and even it by arranging and updating the necessary nodes and
variables;

}
}
RETURN;

A-ll

FUNCTION VOLUMECHECK ();

Mark the current box as packed: BOXLIST[CBOXI].PACKED=l;
Keep the orientation of the current box as it is packed:

BOXLIST[CBOXI].PACKX=CBOXX;
BOXLIST[CBOXI].PACKY=CBOXY;
BOXLIST[CBOXI].PACKZ=CBOXZ;

Update the total packed volume:
PACKEDVOLUME=PACKEDVOLUME+BOXLIST[CBOXI].VOL;

Update the number of boxes packed: PACKEDNUMBOX=PACKEDNUMBOX+l;
(If performing the best so far packing after being done with the iterations:)
If PACKINGBEST=1 do {

To write the information of the packed box to the visualization data file named
"VISUAL", call GRAPHUNPACKEDOUT;

To write the information of the packed box to the report file,
call OUTPUTBOXLIST;

}
Else if a hundred percent packing of the pallet has been reached or the total volume of the

packed boxes is equal to the total volume of the input box set {
Packing is finished: PACKING=0;
A hundred percent packing has been reached: HUNDREDPERCENT=1;

}
RETURN;

FUNCTION GRAPHUNPACKEDOUTO;

If this function is called for a visualization data out, write the necessary information to
the file "VISUAL";

Else merge the unpacked box information to the end of the report file;
RETURN;

OUTPUTBOXLIST ();

Transform the coordinate system and orientation of every box from the best solution
format to the pallet orientation entered by the user in the input text file by looking
at the value of the variable BESTVARIANT;

Write the transformed box information (coordinates and the dimensions as is has been
packed) to the REPORT file;

RETURN;

A-12

FUNCTION REPORT ();

Set the necessary variables to start the best packing found properly;
According to the BESTVARIANT value, determine the orientation of the pallet;
To tell other functions that the best packing found is being performed:

PACKINGBEST=1;
Write the header information about the best solution found to the visualization data file

"VISUAL";
Write the header information about the best solution found to the report data file;
List all possible candidate values by calling LISTCANDITLAYERS();
Sort the array LAYERS in respect to its LAYEREVAL fields in increasing order by

using QSORT;
Set the starting layer thickness value to the best solution's starting layer thickness value:

LAYERTHICKNESS=LAYERS[BESTITE].LAYERDIM;
Set all boxes' packed status to 0: For X=l to TBN do BOXLIST[X].PACKST=0;
do{

Set the variable that shows remaining unpacked potential second layer height in
the current layer: LAYERINLAYER=0;

Set the flag variable that shows packing of the current layer is finished or not:
LAYERDONE=0;

Call PACKLAYERO, to pack the layer, and if a memory error is responded, exit
the program;

If there is a height available for packing in the current layer, perform another
layer packing in the current layer:

- If LAYERINLAYER*0 do {
Get the height available for packing in the current layer as the layer

thickness to be packed: LAYERTHICKNESS=LAYERINLAYER;
Call PACKLAYERO, to pack the layer, and if a memory error is

responded, exit the program;
}
Call FINDLAYER(REMAINPY) to determine the most suitable layer height

fitting in the remaining unpacked height of the pallet;
} While PACKINGS;
Get the difference of the start time and the finish time;
Close both the visualization data file and the report file;
Write all the information about packing to the console;
RETURN;

A-13

Appendix B - The C Program Code of the Model

// INCLUDED HEADER FILES

#include <time.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <malloc.h>
#include <conio.h>

// FUNCTION PROTOTYPES

void initialize(void);
void inputboxlist(void);
void execiterations(void);
void listcanditlayers(void);
inteomplayerlist(const void *i, const void *j);
int packlayer(void);
int findlayer(short int thickness);
void flndbox(short int hmx, short int hy, short int hmy, short int hz, short int hmz);
void analyzebox (short int hmx, short int hy, short int hmy, short int hz, short int hmz,

short int diml, short int dim2, short int dim3);
void findsmallestz(void);
void checkfound(void);
void volumecheck (void);
void graphunpackedout(void);
void outputboxlist(void);
void report(void);

B-l

//****:l; :(:******************** ******************************

// VARIABLE, CONSTANT AND STRUCTURE DECLARATIONS
//**

char strpx[5], strpy[5], strpz[5], strcox[5], strcoy[5], strcoz[5], strpackx[5], strpacky[5],
strpackz[5], filename[12], strtemp[]="", packing, layerdone, evened, variant,
bestvariant, packingbest, hundredpercent, graphout[]="visudat", unpacked, quit;

short int tbn, x, n, layerlistlen, layerinlayer, prelayer, lilz, itenum, hour, min, sec,
layersindex, remainpx, remainpy, remainpz, packedy, prepackedy, layerthickness,
itelayer, boxx, boxy, boxz, boxi, bboxx, bboxy, bboxz, bboxi, preremainpy, cboxi,
cboxx, cboxy, cboxz, bfx, bfy, bfz, bbfx, bbfy, bbfz, bestite, packednumbox,
bestpackednum, xx, yy, zz, px, py, pz;

double packedvolume, bestvolume, totalvolume, totalboxvol, temp, percentageused,
percentagepackedbox, elapsedtime;

struct boxinfo {
char packst;
short int diml, dim2, dim3, n, cox, coy, coz, packx, packy, packz;
long int vol;

} boxlist[5000];

struct layerlist{
long int layereval;
short int layerdim;

} layers[1000];

struct scrappad{
struct scrappad *pre, *pos;
short int cumx, cumz;

};

struct scrappad *scrapfirst, *scrapmemb, *smallestz, *trash;

time_t start, finish;

FILE *ifp, *ofp, *gfp;

B-2

//MAIN PROGRAM

int main(int arge, char *argv[]) {
if(argc==l){

printf ("(ASSUMED TO HAVE '.TXT' EXTENSION; UP TO 8
CHARACTERS LONG)\n");

printf ("PLEASE ENTER THE NAME OF THE INPUT FILE :");
scanf ("%s",filename);

}
else {

printf("%s", argv[l]);
strcpy(filename, argv[l]);

}
initialize();
time(&start);
printf("\nPRESS Q TO QUIT AT ANYTIME AND WAIT\n\n");
execiterations();
time(&finish);
reportO;
getch();
return 0;

}

// PERFORMS INITIALIZATIONS

void initialize(void) {
if(filename=""){

printf("\nINVALID FILE NAMEW);
exit(l);

}
inputboxlist();
temp=1.0; totalvolume=temp*xx*yy*zz; totalboxvol=0.0;
for (x=l; x<=tbn; x++) totalboxvol=totalboxvol+boxlist[x].vol;
scrapfirst=malloc(sizeof(structscrappad));
if ((*scrapfirst).pos==NULL) {

printf("Insufficient memory available\n");
exit(l);

- }
(*scrapfirst).pre=NULL;(*scrapfirst).pos=NULL;
bestvolume=0.0; packingbest=0; hundredpercent=0; itenum=0; quit=0;

}

B-3

II**

II READS THE PALLET AND BOX SET DATA ENTERED BY THE USER FROM
// THE INPUT FILE
II**

void inputboxlist(void){

short int n;
char lbl[5], diml[5], dim2[5], dim3[5], boxn[5], strxx[5], stryy[5], strzz[5];

strcpy(strtemp, filename);
strcat(strtemp,".txt");
if ((ifp=fopen(strtemp,"r"))==NULL) {

printf("Cannot open file %s", strtemp);
exit(l);

}
tbn=l;
if (fscanf(ifp,"%s %s %s",strxx, stryy, strzz)==EOF) exit(l);
xx=atoi(strxx); yy=atoi(stryy); zz=atoi(strzz);
while (fscanf(ifp,"%s %s %s %s %s",lbl,diml,dim2,dim3,boxn)!=EOF){

boxlist[tbn] .diml =atoi(diml);
boxlist[tbn] .dim2=atoi(dim2);
boxlist[tbn] .dim3=atoi(dim3);
boxlistftbn]. vol=boxlist[tbn] .diml *boxlist[tbn] .dim2*boxlist[tbn] .dim3;
n=atoi(boxn); boxlist[tbn].n=n;
while (~n) boxlist[tbn+n]=boxlist[tbn];
tbn=tbn+atoi(boxn);

}
-tbn;
fclose(ifp);
return;

B-4

// ITERATIONS ARE DONE AND PARAMETERS OF THE BEST SOLUTION ARE
// FOUND

void execiterations(void){
for (variant=l; (variant<=6) & Iquit; variant++){

switch(variant){
case 1:

px=xx; py=yy; pz=zz;
break;

case 2:
px=zz; py=yy; pz=xx;
break;

case 3:
px=zz; py=xx; pz=yy;
break;

case 4:
px=yy; py=xx; pz=zz;
break;

case 5:
px=xx; py=zz; pz=yy;
break;

case 6:
px=yy; py=zz; pz=xx;
break;

}
listcanditlayers();
layers[0] .layereval=-1;
qsort(layers,layerlistlen+1 ,sizeof(struct layerlist),complayerlist);
for (layersindex=l; (layersindex<=layerlistlen) & Iquit; layersindex++){

++itenum;
time(&finish);
elapsedtime = difftime(finish, start);
printf("VARIANT: %5d; ITERATION (TOTAL): %5d; BEST SO

FAR: %.3f %%; TIME: %.0f*,
variant, itenum, percentageused, elapsedtime);

packedvolume=0.0;
packedy=0;
packing=l;
layerthickness^layerstlayersindexj.layerdim;
itelayer=layersindex;
remainpy=py; remainpz=pz;
packednumbox=0;
for (x=l; x<=tbn; x++) boxlist[x].packst=0;

B-5

do{
layerinlayer=0;
layerdone=0;
if (packlayer()) exit(1);
packedy=packedy+layerthickness;
remainpy=py-packedy;
if (layerinlayer & !quit){

prepackedy=packedy;
preremainpy=remainpy;
remainpy=layerthickness-prelayer;
packedy=packedy-layerthickness+prelayer;
remainpz^lilz;
layerthickness=layerinlayer;
layerdone=0;
if (packlayerO) exit(1);
packedy=prepackedy;
remainpy=preremainpy;
remainpz=pz;

}
findlayer(remainpy);

}
while (packing & !quit);
if ((packedvolumObestvolume) & !quit) {

bestvolume=packedvolume;
bestvariant^variant;
bestite=itelayer;
bestpackednum=packednumbox;

}
if (hundredpercent) break;
percentageused=bestvolume* 100/totalvolume;
printf("\b

\b\b\b\b\b\b\b\b\b\b\b");
printf("\b

\b\b\b\b\b\b\b");
}
if (hundredpercent) break;
if ((xx=yy) & (yy==zz)) variant=6;

B-6

// LISTS ALL POSSIBLE LAYER HEIGHTS BY GIVING A WEIGHT VALUE TO
// EACH OF THEM.

void listcanditlayers(void){

char same;
short int exdim,dimdif,dinien2,dimen3,y,z,k;
long int layereval;

layerlistlen=0;
for (x=l; x<=tbn; x++){

for(y=l;y<=3;y++){
switch(y) {
case 1:

exdim=boxlist[x] .diml;
dimen2=boxlist[x] .dim2;
dimen3=boxlist[x] .dim3;
break;

case 2:
exdim=boxlist[x] .dim2;
dimen2=boxlist[x].diml;
dimen3=boxlist[x] .dim3;
break;

case 3:
exdim^boxlistfx] .dim3;
dimen2=boxlist[x] .dim 1;
dimen3=boxlist[x] .dim2;
break;

}
if ((exdim>py) || (((dimen2>px) || (dimen3>pz)) &

((dimen3>px) || (dimen2>pz)))) continue;
same=0;
for (k=l; k<=layerlistlen; k++) if (exdim=layers[k].layerdim){

same=l;
continue;

}
if (same) continue;
layereval=0;

B-7

}
}
return;

for (z=l; z<=tbn; z++){
if(!(x==z)){

dimdif=abs(exdim-boxlist[z].diml);
if (abs(exdim-boxlist[z] .dim2)<dimdif)

dimdif=abs(exdim-boxlist[z].dim2);
if (abs(exdim-boxlist[z] .dim3)<dimdif)

dimdif=abs(exdim-boxlist[z].dim3);
layereval=layereval+dimdif;

}
}
layers[++layerlistlen].layereval=layereval;
layers [layerlistlen].layerdim=exdim;

}

// REQUIRED FUNCTION FOR QSORT FUNCTION TO WORK

int complayerlist(const void *i, const void *j){
return *(long int*)i-*(long int*)j;

}

// PACKS THE BOXES FOUND AND ARRANGES ALL VARIABLES AND
// . RECORDS PROPERLY

int packlayer(void){

short int lenx, lenz, lpz;

if (llayerthickness) {
packing=0; return 0;

}
(*scrapfirst).cumx=px;(*scrapfirst).cumz=0;
for(;!quit;){

if (kbhitO) if (toupper(getch())==*Q') {
quit=l;
printf("\n\nWait please...\n");

}
findsmallestz();

B-8

//*** SITUATION-1: NO BOXES ON THE RIGHT AND LEFT SIDES ***

if (!(*smallestz).pre & !(*smallestz).pos){
lenx=(* smallestz). cumx;
lpz=remainpz-(*smallestz).cumz;
findbox(lenx, layerthickness, remainpy, lpz, lpz);
checkfound();
if (layerdone) break;
if (evened) continue;
boxlist[cboxi].cox=0;boxlist[cboxi].coy=packedy;
boxlist[cboxi].coz=(*smallestz).cumz;
if (cboxx==(*smallestz).cumx)

(*smallestz).cumz=(*smallestz).cumz+cboxz;
else {

(*smallestz).pos=malloc(sizeof(structscrappad));
if ((*smallestz).pos==NULL) {

printf("Insufficient memory available\n");
return 1;

}
(*((*smallestz).pos)).pos=NULL;
(*((*smallestz).pos)).pre=smallestz;
(*((*smallestz).pos)).cumx=(*smallestz).cumx;
(*((*smallestz).pos)).cumz=(*smallestz).cumz;
(*smallestz).cumx=cboxx;
(*smallestz).cumz=(*smallestz).cumz+cboxz;

}
volumecheck();

}

//*** SITUATION-2: NO BOXES ON THE LEFT SIDE ***

else if (!(*smallestz).pre) {
lenx=(*smallestz).cumx;
lenz=(*((*smallestz).pos)).cumz-(*smallestz).cumz;
lpz=remainpz-(* smallestz) .cumz;
findbox(lenx, layerthickness, remainpy, lenz, lpz);
checkfound();
if (layerdone) break;
if (evened) continue;
boxlist[cboxi]. coy=packedy;
boxlist[cboxi].coz=(*smallestz).cumz;
if (cboxx==(*smallestz).cumx) {

boxlist[cboxi].cox=0;

B-9

if (*smallestz).cumz+cboxz=(*((*smallestz).pos)).cumz) {
(*smallestz).cumz=(*((*smallestz).pos)).cumz;
(*smallestz).cumx=(*((*smallestz).pos)).cumx;
trash=(*smallestz).pos;
(*smallestz).pos=(*((*smallestz).pos)).pos;
if ((*smallestz).pos)

(*((*smallestz).pos)).pre=smallestz;
free(trash);

}
else (* smallestz). cumz=(* smallestz) .cumz+cboxz;

}
else {

boxlist[cboxi].cox=(*smallestz).cumx-cboxx;
if((*smallestz).cumz+cboxz==(*((*smallestz).pos)).cumz)

(*smallestz).cumx=(*smallestz).cumx-cboxx;
else {

(*((*smallestz).pos)).pre=
malloc(sizeof(struct scrappad));

if ((*((*smallestz).pos)).pre=NULL) {
printf("Insufficient memory available\n");
return 1;

}
(*((*((*smallestz).pos)).pre)).pos=(*smallestz).pos;
(*((*((*smallestz).pos)).pre)).pre=smallestz;
(*smallestz).pos=(*((*smallestz).pos)).pre;
(*((*smallestz).pos)).cumx=(*smallestz).cumx;
(*smallestz).cumx=(*smallestz).cumx-cboxx;
(*((*smallestz).pos)).cumz=

(*smallestz).cumz+cboxz;

}
}
volumecheckQ;

B-10

//*** SITUATION-3: NO BOXES ON THE RIGHT SIDE ***

else if (!(*smallestz).pos){
lenx=(*smallestz)xumx-(*((*smallestz).pre)).cumx;
lenz=(*((*smallestz).pre)).cumz-(*smallestz).cuinz;
lpz=remainpz-(* smallestz). cumz;
findbox(lenx, layerthickness, remainpy, lenz, lpz);
checkfound();
if (layerdone) break;
if (evened) continue;
boxlist[cboxi] .coy=packedy;
boxlist[cboxi].coz=(*smallestz).cumz;
boxlist[cboxi].cox=(*((*smallestz).pre)).cumx;
if (cboxx=(*smallestz).cumx-(*((*smallestz).pre)).cumx) {

if((*smallestz).cumz+cboxz==(*((*smallestz).pre)).cumz){
(*((*smallestz).pre)).cumx=(*smallestz).cumx;
(*((*smallestz).pre)).pos=NULL;
free(smallestz);

}
else(*smallestz).cumz=(*smallestz).cumz+cboxz;

}
else {

if((*smallestz).cumz+cboxz=(*((*smallestz).pre)).cumz)
(*((*smallestz).pre)).cumx=

(*((*smallestz).pre)).cumx+cboxx;
else {

(*((*smallestz).pre)).pos=
malloc(sizeof(struct scrappad));

if ((*((*smallestz).pre)).pos=NULL) {
printf("Insufficient memory availableW);
return 1;

}
(*((*((*smallestz).pre)).pos)).pre=(*smallestz).pre;
(*((*((*smallestz).pre)).pos)).pos=smallestz;
(*smallestz).pre=(*((*smallestz).pre)).pos;
(*((*smallestz).pre)).cumx=

(*((*((*smallestz).pre)).pre)).cumx+cboxx;
(*((*smallestz).pre)).cumz=

(*smallestz).cumz+cboxz;

}
}
volumecheck();

B-ll

//*** SITUATION-4: THERE ARE BOXES ON BOTH OF THE SIDES ***

//*** SUBSITUATION-4A: SIDES ARE EQUAL TO EACH OTHER ***

else if ((*((*smallestz).pre)).cumz==(*((*smallestz).pos)).cumz) {
lenx=(*smallestz).cumx-(*((*smallestz).pre)).cumx;
lenz=(*((*smallestz).pre))xumz-(*smallestz).cumz;
lpz=remainpz-(*smallestz).cumz;
findbox(lenx, layerthickness, remainpy, lenz, lpz);
checkfound();
if (layerdone) break;
if (evened) continue;
boxlist[cboxi] .coy=packedy;boxlist[cboxi] .coz=(*smallestz).cumz;
if (cboxx==(*smallestz).cumx-(*((*smallestz).pre)).cumx) {

boxlist[cboxi].cox=(*((*smallestz).pre)).cumx;
if((*smallestz).cumz+cboxz=(*((*smallestz).pos)).cumz){

(*((*smallestz).pre)).cumx=
(*((*smallestz).pos)).cumx;

if ((*((*smallestz).pos)).pos) {
(*((*smallestz).pre)).pos=

(*((*smallestz).pos)).pos;
(*((*((*smallestz).pos)).pos)).pre=

(*smallestz).pre;
free(smallestz);

}
else {

(*((*smallestz).pre)).pos=NULL;
free(smallestz);

}
}
else(*smallestz).cumz=(*smallestz).cumz+cboxz;

}
else if ((*((*smallestz).pre)).cumx<px-(*smallestz).cumx) {

if((*smallestz).cumz+cboxz=(*((*smallestz).pre)).cumz){
(*smallestz).cumx=(*smallestz).cumx-cboxx;
boxlist[cboxi].cox=(*smallestz).cumx-cboxx;

}
else {

boxlist[cboxi].cox=(*((*smallestz).pre)).cumx;
(*((*smallestz).pre)).pos=

malloc(sizeof(struct scrappad));
if ((*((*smallestz).pre)).pos==NULL) {

printf("Insufficient memory available\n");
return 1;

}
(*((*((*smallestz).pre)).pos)).pre=(*smallestz).pre;

B-12

}

(*((*((*smallestz).pre)).pos)).pos=smallestz;
(*smallestz).pre=(*((*smallestz).pre)).pos;
(*((*smallestz).pre)).cumx=

(*((*((*smallestz).pre)).pre)).cumx+cboxx;
(*((*smallestz).pre)).cumz=

(*smallestz).cumz+cboxz;

}
}
else {

if((*smallestz).cumz+cboxz==(*((*smallestz).pre)).cumz){
(*((*smallestz).pre)).cumx=

(*((*smallestz).pre)).cumx+cboxx;
boxlist[cboxi].cox=(*((*smallestz).pre)).cumx;

}
else {

boxlist[cboxi].cox=(*smallestz).cumx-cboxx;
(*((*smallestz).pos)).pre=

malloc(sizeof(struct scrappad));
if ((*((*smallestz).pos)).pre=NULL) {

printf("Insufficient memory available\n");
return 1;

}
(*((*((*smallestz).pos)).pre)).pos=(*smallestz).pos;
(*((*((*smallestz).pos)).pre)).pre=smallestz;
(*smallestz).pos=(*((*smallestz).pos)).pre;
(*((*smallestz).pos)).cumx=(*smallestz).cumx;
(*((*smallestz).pos)).cumz=

(*smallestz).cumz+cboxz;
(*smallestz).cumx=(*smallestz).cumx-cboxx;

}
}
volumecheckQ;

//*** SUBSITUATION-4B: SIDES ARE NOT EQUAL TO EACH OTHER ***

else {
lenx=(*smallestz).cumx-(*((*smallestz).pre)).cumx;
lenz=(*((*smallestz).pre)).cumz-(*smallestz).cumz;
lpz=remainpz-(* smallestz) .cumz;
findbox(lenx, layerthickness, remainpy, lenz, lpz);
checkfound();
if (layerdone) break;
if (evened) continue;
boxlist[cboxi] .coy=packedy;boxlist[cboxi] .coz=(*smallestz).cumz;

B-13

boxlist[cboxi].cox=(*((*smallestz).pre)).cumx;
if (cboxx==(*smallestz).cumx-(*((*smallestz).pre)).cumx) {

if((*smallestz).cumz+cboxz==(*((*smallestz).pre)).cnmz) {
(*((*smallestz).pre)).cumx=(*smallestz).cumx;
(*((*smallestz).pre)).pos=(*smallestz).pos;
(*((*smallestz).pos)).pre=(*smallestz).pre;
free(smallestz);

}
else(*smallestz).cumz=(*smallestz).cumz+cboxz;

}
else {

if((*smallestz).cumz+cboxz==(*((*smallestz).pre)).cumz)
(*((*smallestz).pre)).cumx=

(*((*smallestz).pre)).cumx+cboxx;
else if ((*smallestz).cumz+cboxz==

(*((*smallestz).pos)).cumz) {
boxlist[cboxi].cox=(*smallestz).cumx-cboxx;
(*smallestz).cumx=(*smallestz).cumx-cboxx;

}
else{

}
}
volumecheck();

}
}
return 0;

(* ((* smallestz).pre)) .pos=
malloc(sizeof(struct scrappad));

if ((*((*smallestz).pre)).pos=NULL) {
printf("Insufficient memory available\n");
return 1;

}
(*((*((*smallestz).pre)).pos)).pre=(*smallestz).pre;
(*((*((*smallestz).pre)).pos)).pos=smallestz;
(*smallestz).pre=(*((*smallestz).pre)).pos;
(*((*smallestz).pre)).cumx=

(*((*((*smallestz).pre)).pre)).cumx+cboxx;
(*((*smallestz).pre)).cumz=

(*smallestz).cumz+cboxz;

B-14

//**

// FINDS THE MOST PROPER LAYER HIGHT BY LOOKING AT THE UNPACKED
// BOXES AND THE REMAINING EMPTY SPACE AVAILABLE
//**

int findlayer(short int thickness) {

short int exdim,dimdif,dimen2,dimen3,y,z;
long int layereval, eval;

layerthickness=0;
eval=l 000000;
for(x=l;x<=tbn;x++){

if (boxlist[x].packst) continue;
for(y=l;y<=3;y++){

switch(y) {
case 1:

exdim=boxlist[x].diml;
dimen2=boxlist[x] .dim2;
dimen3=boxlist[x] .dim3;
break;

case 2:
exdim=boxlist[x] .dim2;
dimen2=boxlist[x] .dim 1;
dimen3=boxlist[x].dim3;
break;

case 3:
exdim=boxlist[x] .dim3;
dimen2=boxlist[x].diml;
dimen3=boxlist[x] .dim2;
break;

}
layereval=0;
if ((exdim<=thickness) & (((dimen2<=px) &

(dimen3<=pz)) || ((dimen3<=px) & (dimen2<=pz)))) {
for(z=l;z<=tbn;z++){

if (!(x==z) & !(boxlist[z].packst)){
dimdif=abs(exdim-boxlist[z].diml);
if (abs(exdim-boxlist[z] .dim2)<dimdif)

dimdif=abs(exdim-boxlist[z] .dim2);
if (abs(exdim-boxlist[z] .dim3)<dimdif)

dimdif=abs(exdim-boxlist[z].dim3);
layereval=layereval+dimdif;

}
}
if (layerevaKeval) {

B-15

eval=layereval;
layerthickness=exdim;

}
}

}
}
if (layerthickness==0 || layerthickness>remainpy) packing=0;
return 0;

}

// FINDS THE MOST PROPER BOXES BY LOOKING AT ALL SEX POSSIBLE
// ORIENTATIONS, EMPTY SPACE GIVEN, ADJACENT BOXES,
// AND PALLET LIMITS

void findbox(short int hmx, short int hy, short int hmy, short int hz, short int hmz){
short int y;

bfx=32767; bfy=32767; bfz=32767;
bbfx=32767; bbfy=32767; bbfz=32767;
boxi=0; bboxi=0;
for (y=l; y<=tbn; y=y+boxlist[y].n){

for (x=y; x<x+boxlist[y].n-l; x++) if (!boxlist[x].packst) break;
if (boxlist[x].packst) continue;
if (x>tbn) return;
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].diml, boxlist[x].dim2,

boxlist[x].dim3);
if ((boxlist[x].diml=boxlist[x].dim3) &

(boxlist[x] .dim3==boxlist[x] .dim2)) continue;
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].diml, boxlist[x].dim3,

boxlist[x].dim2);
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].dim2, boxlist[x].diml,

boxlist[x].dim3);
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].dim2, boxlist[x].dim3,

boxlist[x].diml);
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].dim3, boxlist[x].diml,

boxlist[x].dim2);
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].dim3, boxlist[x].dim2,

boxlist[x].diml);
}

}

B-16

// ANALYZES EACH UNPACKED BOX TO FIND THE BEST FITTING ONE TO
// THE EMPTY SPACE GIVEN
/ / J» -'- -'- -'- -'- -'■* -'- -'- -'- -'- -'■' -'■* -'» -t» -'» -'■* **- -** ■'- *'- ^» >i^ >t« A >tj A A A A A >>. ^. A A .1. .t. A A A A A A A A »l* »l* »l» »U »t» «I« »1» «I» «t» «IJ «I» »U «1» »i« «1* «1» *l» *1» «I» «1« «1» «1» ■!» ■!■
/ / T* ^ ^ V n* V V ^ V V V ^ T* ^ V ^ V ^ T* V ^ ^ ^ ^ V ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ V ^ *r ^ "P ^ * * V * V ^ ^ ^T * * ^ * * * * * * * * * ^ ^ * ^ ^ ^ •

void analyzebox (short int hmx, short int hy, short int hmy,
short inthz, short int hmz,
short int dim 1, short int dim2, short int dim3){

if (diml<=hmx && dim2<=hmy && dim3<=hmz){
if (dim2<=hy) {

if (hy-dim2<bfy) {
boxx=diml; boxy=dim2; boxz=dim3;
bfx=hmx-diml; bfy=hy-dim2; bfz=abs(hz-dim3); boxi=x;

}
else if (hy-dim2==bfy && hmx-diml<bfx) {

boxx=diml; boxy=dim2; boxz=dim3;
bfx=hmx-diml; bfy=hy-dim2; bfz=abs(hz-dim3); boxi=x;

}
else if (hy-dim2==bfy && hmx-diml=

bfx && abs(hz-dim3)<bfz) {
boxx=diml; boxy=dim2; boxz=dim3;
bfx=hmx-diml; bfy=hy-dim2; bfz=abs(hz-dim3); boxi=x;

}
}
else {

if (dim2-hy<bbfy) {
bboxx=diml; bboxy=dim2; bboxz=dim3;
bbfx=hmx-diml; bbfy=dim2-hy;
bbfz=abs(hz-dim3); bboxi=x;

}
else if (dim2-hy==bbfy && hmx-diml<bbfx) {

bboxx=diml; bboxy=dim2; bboxz=dim3;
bbfx=hmx-diml; bbfy=dim2-hy;
bbfz=abs(hz-dini3); bboxi=x;

}
else if (dim2-hy==bbfy &&

hmx-diml=bbfk && abs(hz-dim3)<bbfz) {
bboxx=diml; bboxy=dim2; bboxz=dim3;
bbfx=hmx-diml; bbfy=dim2-hy;
bbfz=abs(hz-dim3); bboxi=x;

}

B-17

/ t-Hr -H- -tr -H- -ilr ^t- *1# «1# *1* ^U tb d* ^ *^ ^ ^ ^ *^ ^ *fr ^ ^* ^ ^ ^k ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ "^ ^k ^ *t ^ *t ^ ^ ^ ^t ^k ^ ?fc ?fc ^ ifc 5fc Sfe df ?fe / /*p *^ *p *p ^ ^ *J* T* »^ *p ^ ^ ^ ^ ^ ^ ^ ^ ^ *p ^ ^ ^ ^ ^ ^ ^ *P ^ ^ V ^ V V ^ ^ V ^ ^ *P ^ *^ T* * * T* ^^ * * * T* * * * ^ ^

// FINDS THE FIRST TO BE PACKED GAP IN THE LAYER EDGE
//**

void findsmallestz(void) {
scrapmemb=scrapfirst;
smallestz=scrapmemb;
while (! ((* scrapmemb) .pos=NULL)) {

if((*((*scrapmemb).pos)).cumz<(*smallestz).cumz)
smallestz=(*scrapmemb).pos;

scrapmemb=(*scrapmemb).pos;

}
return;

}

//**

// AFTER FINDING EACH BOX, THE CANDIDATE BOXES AND THE
// CONDITION OF THE LAYER ARE EXAMINED
//**

void checkfound(void){
evened=0;
if (boxi) {

cboxi=boxi;cboxx=boxx;cboxy=boxy;cboxz=boxz;

}
else {

if ((bboxi>0) & (layerinlayer || (!(*smallestz).pre & !(*smallestz).pos))){
if (Ilayerinlayer) {

prelayer=layerthickness;
lilz=(* smallestz). cumz;

}
cboxi=bboxi;cboxx=bboxx;cboxy=bboxy;cboxz:=bboxz;
layerinlayer=layerinlayer+bboxy-layerthickness;
layerthickness=bboxy;

}
else {

if (!(*smallestz).pre & !(*smallestz).pos) layerdone=l;
else {

evened=l;
if (!(*smallestz).pre) {

trash=(*smallestz).pos;
(*smallestz).cumx=(*((*smallestz).pos)).cumx;
(*smallestz).cumz=(*((*smallestz).pos)).cumz;
(*smallestz).pos=(*((*smallestz).pos)).pos;
if ((*smallestz).pos)

B-18

}
}
return;

}

(*((*smallestz).pos)).pre=smallestz;
free(trash);

}
else if (!(*smallestz).pos){

(*((*smallestz).pre)).pos=NULL;
(*((*smallestz).pre)).cumx=(*smallestz).cumx;
free(smallestz);

}
else {

if((*((*smallestz).pre)).cumz==
(*((*smallestz).pos)).cumz) {

(*((*smallestz).pre)).pos=
(*((*smallestz).pos)).pos;

if ((*((*smallestz).pos)).pos)
(*((*((*smallestz).pos)).pos)).pre=

(*smallestz).pre;
(*((*smallestz).pre)).cumx=

(*((*smallestz).pos)).cumx;
free((*smallestz).pos);
free(smallestz);

}
else {

(*((*smallestz).pre)).pos=(*smallestz).pos;
(*((*smallestz).pos)).pre=(*smallestz).pre;
if ((*((*smallestz).pre)).cumz<

(*((*smallestz).pos)).cumz)
(*((*smallestz).pre)).cumx=

(*smallestz).c\anx;
free(smallestz);

B-19

// AFTER PACKING OF EACH BOX, 100% PACKING CONDITION IS CHECKED

void volumecheck (void) {
boxlist[cboxi].packst=l;
boxlist[cboxi] .packx=cboxx;boxlist[cboxi] .packy=cboxy;
boxlist[cboxi] .packz=cboxz;
packedvolume=packedvolume+boxlist[cboxi].vol;
packednumbox++;
if (packingbest) {

graphunpackedout();
outputboxlist();

}
else if (packedvolume==totalvolume || packedvolume=totalboxvol) {

packing=0;
hundredpercent=l;

}
return;

}

// DATA FOR THE VISUALIZATION PROGRAM IS WRITTEN TO THE
// "VISUDAT" FILE AND THE LIST OF UNPACKED BOXES IS
// MERGED TO THE END OF THE REPORT FILE

void graphunpackedout(void) {
charn[5];
if (! unpacked)!

itoa(boxlist[cboxi].cox, strcox, 10); itoa(boxlist[cboxi].coy, strcoy, 10);
itoa(boxlist[cboxi].coz, strcoz, 10);
itoa(boxlist[cboxi].packx, strpackx, 10);
itoa(boxlist[cboxi].packy, strpacky, 10);
itoa(boxlist[cboxi].packz, strpackz, 10);

}
else {

itoa(cboxi, n, 10); itoa(boxlist[cboxi].diml, strpackx, 10);
itoa(boxlist[cboxi].dim2, strpacky, 10);
itoa(boxlist[cboxi].dim3, strpackz, 10);

}
if (lunpacked) fprintf(gfp,"%5s%5s%5s%5s%5s%5s\n",

strcox,strcoy,strcoz,strpackx,strpacky,strpackz);
elsefprintf(ofp,"%5s%5s%5s%5s\n",n,strpackx,strpacky,strpackz);

B-20

//* **

// TRANSFORMS THE FOUND COORDINATE SYSTEM TO THE ONE ENTERED
// BY THE USER AND WRITES THEM TO THE REPORT FILE
//***

void outputboxlist(void){
char strx[5], strpackst[5], strdiml[5], strdim2[5], strdim3[5], strcox[5], strcoy[5],

strcoz[5], strpackx[5], strpacky[5], strpackz[5];
short int x, y, z, bx, by, bz;
switch(bestvariant) {

case 1:
x=boxlist[cboxi].cox; y=boxlist[cboxi].coy; z=boxlist[cboxi].coz;
bx=boxlist[cboxi] .packx; by=boxlist[cboxi] .packy;
bz=boxlist[cboxi] .packz;
break;

case 2:
x=boxlist[cboxi].coz; y=boxlist[cboxi].coy; z=boxlist[cboxi].cox;
bx=boxlist[cboxi] .packz; by=boxlist[cboxi] .packy;
bz=boxlist[cboxi] .packx;
break;

case 3:
x=boxlist[cboxi].coy; y=boxlist[cboxi].coz; z=boxlist[cboxi].cox;
bx=boxlist[cboxi] .packy; by=boxlist[cboxi] .packz;
bz=boxlist[cboxi] .packx;
break;

case 4:
x=boxlist[cboxi] .coy; y=boxlist[cboxi] .cox; z=boxlist[cboxi] .coz;
bx=boxlist[cboxi] .packy; by=boxlist[cboxi] .packx;
bz=boxlist[cboxi] .packz;
break;

case 5:
x=boxlist[cboxi] .cox; y=boxlist[cboxi] .coz; z=boxlist[cboxi] .coy;
bx=boxlist[cboxi] .packx; by=boxlist[cboxi] .packz;
bz=boxlist[cboxi] .packy;
break;

case 6:
x=boxlist[cboxi] .coz; y=boxlist[cboxi] .cox; z=boxlist[cboxi] .coy;
bx=boxlist[cboxi] .packz; by=boxlist[cboxi] .packx;
bz=boxlist[cboxi] .packy;
break;

}
itoa(cboxi, strx,10);
itoa(boxlist[cboxi].packst, strpackst, 10);
itoa(boxlist[cboxi].diml, strdiml, 10);
itoa(boxlist[cboxi].dim2, strdim2,10)
itoa(boxlist[cboxi].dim3, strdim3,10)

B-21

itoa(x, strcox, 10);
itoa(y, strcoy, 10);
itoa(z, strcoz, 10);
itoa(bx, strpackx, 10);
itoa(by, strpacky, 10);
itoa(bz, strpackz, 10);
boxlist[cboxi]. cox=x; boxlist[cboxi]. coy=y; boxlist[cboxi] .coz=z;
boxlist[cboxi] .packx=bx; boxlist[cboxi] .packy=by; boxlist[cboxi] .packz=bz;
Q)rintf(oQ),"%5s%5s%9s%9s%9s%9s%9s%9s%9s%9s%9s\n",strx,strpackst,

strdiml,strdim2,strdim3,strcox,strcoy,strcoz,strpackx,strpacky,strpackz);
return;

//***

II USING THE PARAMETERS FOUND, PACKS THE BEST SOLUTION FOUND
// AND REPORS TO THE CONSOLE AND TO A TEXT FILE
//***

void report(void){
quit=0;
switch(bestvariant) {

case 1:
px=xx; py=yy; pz=zz;
break;

case 2:
px=zz; py=yy; pz=xx;
break;

case 3:
px=zz; py=xx; pz=yy;
break;

case 4:
px=yy; py=xx; pz=zz;
break;

case 5:
px=xx; py=zz; pz=yy;
break;

case 6:
px=yy; py=zz; pz=xx;
break;

}
packingbest=l;
if ((gfp=fopen(graphout,"w"))=NULL) {

printf("Cannot open file %s", filename);
exit(l);

}

B-22

itoa(px, strpx, 10);
itoa(py, strpy, 10);
itoa(pz, strpz, 10);
§)rintf(gQ),"%5s%5s%5s\n",strpx,strpy,strpz);
strcat(filename," .out");
if ((ofp=fopen(filename,"w"))=NULL) {

printf("Cannot open file %s", filename);
exit(l);

}
percentagepackedbox=bestvolume* 100/totalboxvol;
percentageused^bestvolume* 100/totalvolume;
elapsedtime = difftime(finish, start);
fprintf(ofp," *** REPORT ***\n\n");
fprintf(ofp," ELAPSED TIME :

Almost %.0f sec\n", elapsedtime);
fprintf(ofp," TOTAL NUMBER OF ITERATIONS DONE : %d\n",

itenum);
fprintf(ofp," BEST SOLUTION FOUND AT :

ITERATION: %d OF VARIANT: %d\n", bestite, bestvariant);
fprintf(ofp," TOTAL NUMBER OF BOXES : %d\n", tbn);
fprintf(ofp," PACKED NUMBER OF BOXES :

%d\n", bestpackednum);
fprintf(ofp," TOTAL VOLUME OF ALL BOXES : %.0f\n",

totalboxvol);
fprintf(ofp," PALLET VOLUME : %.0f\n",

totalvolume);
fprintf(ofp," BEST SOLUTION'S VOLUME UTILIZATION :

%.0f OUT OF %.0f\n", bestvolume, totalvolume);
fprintf(ofp," PERCENTAGE OF PALLET VOLUME USED :

%.6f %%\n", percentageused);
fprintf(ofp," PERCENTAGE OF PACKED BOXES (VOLUME) : %.6f %%\n",

percentagepackedbox);
fprintf(ofp," WHILE PALLET ORIENTATION :

X=%d; Y=%d; Z= %d\n", px, py, pz);
fprintf(ofp,"

 \n");
fprintf(ofp," NO: PACKSTA DIMEN-1 DMEN-2 DIMEN-3 COOR-X

COOR-Y COOR-Z PACKEDX PACKEDY PACKEDZ\n");
fprintf(ofp,"

 \n»);
listcanditlayers();
layers[0] .layereval=-1;
qsort(layers,layerlistlen+l,sizeof(structlayerlist),complayerlist);
packedvolume=0.0;
packedy=0;
packing=l;

B-23

layerthickness=layers[bestite].layerdim;
remainpy=py; remainpz=pz;
for (x=l; x<=tbn; x++) boxlist[x].packst=0;
do{

layerinlayer^O;
layerdone=0;
packlayer();
packedy=packedy+layerthickness;
remainpy=py-packedy;
if(layerinlayer){

prepackedy=packedy;
preremainpy=remainpy;
remainpy=layerthickness-prelayer;
packedy=packedy-layerthickness+prelayer;
remainpz=lilz;
layerthickness=layerinlayer;
layerdone=0;
packlayer();
packedy=prepackedy;
remainpy=preremainpy;
remainpz=pz;

}
if (! quit) findlayer(remainpy);

}
while (packing & !quit);
fprintf(ofp,"\n\n *** LIST OF UNPACKED BOXES ***\n");
unpacked=l;
for (cboxi=l; cboxi<=tbn; cboxi++) if (!boxlist[cboxi].packst)

graphunpackedoutO;
unpacked=0;
fclose(ofp);
fclose(gfp);
printf("\n");
for (n=l; n<=tbn; n++)

if (boxlist[n].packst) printf("%d %d %d %d %d %d %d %d %d %d\n",n,
boxlist[n].diml,boxlist[n].dim2,boxlist[n].dim3,boxlist[n].cox,
boxlist[n] .coy,boxlist[n] .coz,boxlist[n] .packx,boxlist[n].

packy,boxlist[n] .packz);
printf(" ELAPSED TIME : Almost %.0f sec\n",

elapsedtime);
printf(" TOTAL NUMBER OF ITERATIONS DONE : %d\n", itenum);
printfC BEST SOLUTION FOUND AT :

ITERATION: %d OF VARIANT: %d\n", bestite, bestvariant);
printf(" TOTAL NUMBER OF BOXES : %d\n", tbn);
printf(" PACKED NUMBER OF BOXES : %d\n",

bestpackednum);

B-24

printf(" TOTAL VOLUME OF ALL BOXES : %.0f\n",
totalboxvol);

printf(" PALLET VOLUME : %.0f\n", totalvolume);
printf(" BEST SOLUTION'S VOLUME UTILIZATION : %.0f OUT OF

%.0f\n", bestvolume, totalvolume);
printfC PERCENTAGE OF PALLET VOLUME USED : %.6f %%\n",

percentageused);
printf(" PERCENTAGE OF PACKED BOXES (VOLUME) : %.6f %%\n",

percentagepackedbox);
printf(" WHILE PALLET ORIENTATION :

X=%d; Y=%d; Z= %d\n\n\n", px, py, pz);
printf(" TO VISUALIZE THIS SOLUTION, PLEASE RUN 'VISUAL.EXEV);

B-25

Appendix C - The C Program Code of the Visualizer

// INCLUDED HEADER FILES

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <graphics.h>

/* Function prototypes */

void Initialize(void);
void Pack(void);
void PutBox(void);
void SayGoodbye(void);
void Pause(void);
void MainWindow(char *header);
void StatusLine(char *msg);
void DrawBorder(void);
void changetextstyle(int font, int direction, int charsize);
int gprintf(int *xloc, int *yloc, char *fint,...);

// VARIABLE, CONSTANT AND STRUCTURE DECLARATIONS

int GraphDriver; /* The Graphics device driver */
int GraphMode; /* The Graphics mode value */
double AspectRatio; /* Aspect ratio of a pixel on the screen*/
int MaxX, MaxY; /* The maximum resolution of the screen */
int MaxColors; /* The maximum # of colors available */
int ErrorCode; /* Reports any graphics errors */
struct palettetype palette; /* Used to read palette info */
struct dataarray {int ex, cy, cz, pax, pay, paz; } data[2000];
int px, py, pz, cox, coy, coz, packx, packy, packz, a, b, index, currenty, q;
double max, sc;
char strpx[8], strpy[8], strpz[8], oldstrcoy[8], strcox[8], strcoy[8], strcoz[8], strpackx[8],

strpacky[8], strpackz[8];
FILE *igf;

C-l

/* BEGIN MAIN FUNCTION */

int main()
{
Initialize();
Pack();
SayGoodbye();
closegraph();
return(O);

}

/* Set system into Graphics mode */

/* Give user the closing screen
/* Return the system to text mode

*/
*/

/* INITIALIZE: INITIALIZES THE GRAPHICS SYSTEM AND */
/* REPORTS ANY ERRORS WHICH OCCURED. */

void Initialize(void)
{
int xasp, yasp; /* Used to read the aspect ratio*/
GraphDriver = DETECT; /* Request auto-detection */
initgraph(&GraphDriver, &GraphMode,"");
ErrorCode = graphresult(); /* Read result of initialization*/
if(ErrorCode != grOk) { /* Error occured during init */
printf(" Graphics System Error: %s\n", grapherrormsg(ErrorCode));
exit(1);

Y
/* Read the palette from board */
/* Read maximum number of colors*/

/* Read size of screen */
/* read the hardware aspect */

getpalette(&palette);
MaxColors = getmaxcolor() + 1;
MaxX = getmaxx();
MaxY = getmaxyO;
getaspectratio(&xasp, &yasp);
AspectRatio = (double)xasp / (double)yasp; /* Get correction factor */

}

C-2

/* PACK: READS THE DATA FROM "VISUDAT" FILE AND ARRANGES */
/* BOXES TO PACK FROM FAR END TO THE CLOSE */

void Pack(void)
{
struct viewporttype vp;
charbuffer[10];

MainWindow("PACKING OF THE BEST SOLUTION FOUND");
if ((igf=fopen("visudat","r"))=NULL) {

outtextxy(0,0, "CANNOT OPEN FILE visudat");
exit(l);

}
fscanf(igf,"%s %s %s",strpx, strpy, strpz);
px=atoi(strpx); py=atoi(strpy); pz=atoi(strpz);
max=px;
if (py>max) max=py;
if (pz>max) max=pz;
sc=120/max;
getviewsettings(&vp);
settextjustify(CENTER_TEXT, TOP_TEXT);
changetextstyle(TRIPLEX_FONT, HORIZ_DIR, 4);
changetextstyle(DEFAULT_FONT, HORIZ_DIR, 1);
setviewport(vp.left+50, vp.top+40, vp.right-50, vp.bottom-10,1);
getviewsettings(&vp);
settextjustify(CENTER_TEXT, CENTER_TEXT);
outtextxy(20, 0, "PRESS 'Q' TO QUIT");
setcolor(3);
outtextxy(220, 0, "PALLET ORIENTATION (X Y Z) : ");
outtextxy(350, 0, strpx);
outtextxy(390, 0, strpy);
outtextxy(430, 0, strpz);
setfillstyle(EMPTY_FILL, 1);
bar3d(10, 350-sc*2*py, 10+sc*2*px, 350, sc*pz, 1);
outtextxy(460, 30, "COORDINATES:");
outtextxy(460,40, "CX: CY: CZ:");
outtextxy(460, 70, "DIMENSIONS:");
outtextxy(460,80, "DX: DY: DZ:");
index=l;
fscanf (igf,"%s %s %s %s %s %s", strcox, strcoy, strcoz, strpackx, strpacky, strpackz);
cox=atoi(strcox); coy=atoi(strcoy); coz=atoi(strcoz);
packx=atoi(strpackx); packy=atoi(strpacky); packz=atoi(strpackz);
data[index].cx=cox; datafindexj.cy^coy; data[index].cz=coz;
data[index].pax=packx; data[index].pay=packy; data[index].paz=packz;

C-3

index++; currenty=data[index].cy;
while (fscanf (igf,"%s %s %s %s %s %s", strcox, strcoy, strcoz, strpackx, strpacky,

strpackz)!=EOF){
cox=atoi(strcox); coy=atoi(strcoy); coz=atoi(strcoz);
packx=atoi(strpackx); packy=atoi(strpacky); packz=atoi(strpackz);
data[index].cx=cox; data[index].cy=coy; data[index].cz=coz;
data[index].pax=packx; data[index].pay=packy; data[index].paz=packz;

if (data[index]. cy! =currenty) {
b=index; index--;
PutBox();

}
index++;
if (q==l) return;

}
index--;
PutBox();
fclose(igf);
Pause(); /* Pause for user's response */

}
/********** PUTBOX: DRAW BOXES IN THEIR LOCATIONS **********/
void PutBox(void)
{

for (a=index; a>0; a~){
setcolor(O); ^^^^^^^^^__^^^_^^—1^^^___^^^_1__

50, "■■");
90, "||");

setcolor(random(15)+l);
itoa(data[a].pax, strpackx, 10); outtextxy(410, 90, strpackx);
itoa(data[a].pay, strpacky, 10); outtextxy(460, 90, strpacky);
itoa(data[a].paz, strpackz, 10); outtextxy(508, 90, strpackz);
itoa(data[a].cx, strcox, 10); outtextxy(410,50, strcox);
itoa(data[a].cy, strcoy, 10); outtextxy(460, 50, strcoy);
itoa(data[a].cz, strcoz, 10); outtextxy(508, 50, strcoz);
bar3d(10+sc*2*data[a].cx+sc*data[a].cz,

350-sc*2*data[a].cy-sc*.74*data[a].cz-sc*2*data[a].pay,
10+sc*2*data[a].cx+sc*data[a].cz+sc*2*data[a].pax,
350-sc*2*data[a].cy-sc*.74*data[a].cz, sc*data[a].paz, 1);

if (toupper(getch())=,Q'){ q=l; break;}
}
data[1] .cx=data[b] .ex; data[1] .cy=data[b] .cy;
data[1]. cz=data[b]. cz; data[1] .pax=data[b] .pax;
data[1] .pay=data[b] .pay; data[1] .paz=data[b] .paz;
index=l;
currenty=data[index] .cy;

}

C-4

/* SAYGOODBYE: GIVE A CLOSING SCREEN */
/* TO THE USER BEFORE LEAVING. */

void SayGoodbye(void)
{
struct viewporttype viewinfo;
int h, w;

/* Structure to read viewport */

MainWindow("== The End ==");
getviewsettings(&viewinfo); /* Read viewport settings */
changetextstyle(TRIPLEX_FONT, HORIZJDIR, 4);
settextjustify(CENTER_TEXT, CENTERJTEXT);
h = viewinfo.bottom - viewinfo.top;
w = viewinfo.right - viewinfo.left;
outtextxy(w/2, h/2, "That's all, folks!");
StatusLine("Press any key to EXIT");
getch();
cleardevice(); /* Clear the graphics screen */

}

/* PAUSE: PAUSE UNTIL THE USER ENTERS A KEYSTROKE. */

void Pause(void)
{
static char msg[] = "Esc aborts or press a key...";
intc;

StatusLine(msg);
c=getch();
if(0 = c){

c = getch();
}
cleardevice();

}

/* Put msg at bottom of screen
/* Read a character from kbd */

/* Did use hit a non-ASCII key? */
/* Read scan code for keyboard */

/* Clear the screen */

*/

C-5

/* MAINWINDOW: ESTABLISH THE MAIN WINDOW */

void MainWindow(char *header)
{
int height;
cleardevice(); /* Clear graphics screen */
setcolor(MaxColors -1); /* Set current color to white */
setviewport(0, 0, MaxX, MaxY, 1); /* Open port to foil screen */
height = textheight("H"); /* Get basic text height */
changetextstyle(DEFAULT_FONT, HORIZ.DIR, 1);
settextjustify(CENTER TEXT, TOP_TEXT);
outtextxy(MaxX/2,2, header);
setviewport(0, height+4, MaxX, MaxY-(height+4), 1);
DrawBorderO;
setviewport(1, height+5, MaxX-1, MaxY-(height+5), 1);

}

/* STATUSLINE: DISPLAY A STATUS LINE */
/* AT THE BOTTOM OF THE SCREEN. */

void StatusLine(char *msg)
{
int height;
setviewport(0,0, MaxX, MaxY, 1); /* Open port to foil screen */
setcolor(MaxColors -1); /* Set current color to white */
changetextstyle(DEFAULT.FONT, HORIZ_DIR, 1);
settextjustify(CENTER_TEXT, TOP_TEXT);
setlinestyle(SOLID_LINE, 0, NORM_WIDTH);
setfillstyle(EMPTY_FILL, 0);
height = textheight("H"); /* Detemine current height */
bar(0, MaxY-(height+4), MaxX, MaxY);
rectangle(0, MaxY-(height+4), MaxX, MaxY);
outtextxy(MaxX/2, MaxY-(height+2), msg);
setviewport(1, height+5, MaxX-1, MaxY-(height+5), 1);

}

C-6

/* DRAWBORDER: DRAW A SOLID SINGLE LINE */
/* AROUND THE CURRENT VIEWPORT. */

void DrawBorder(void)
{
struct viewporttype vp;
setcolor(MaxColors -1); /* Set current color to white */
setlinestyle(SOLID_LINE, 0,NORM.WIDTH);
getviewsettings(&vp);
rectangle(0, 0, vp.right-vp.left, vp.bottom-vp.top);

}

/* CHANGETEXTSTYLE: SIMILAR TO SETTEXTSTYLE, BUT CHECKS FOR */
/* ERRORS THAT MIGHT OCCUR WHIL LOADING THE FONT FILE. */
/###**####**#********#********##******#******«

void changetextstyle(int font, int direction, int charsize)
{
int ErrorCode;
gfaphresultO; /* clear error code */
settextstyle(font, direction, charsize);
ErrorCode = graphresult(); /* check result */
if(ErrorCode != grOk) { /* if error occured */

closegraph();
printf(" Graphics System Error: %s\n", grapherrormsg(ErrorCode));
exit(1);

}
}

C-7

/* GPRINTF: USED LIKE PRINTF EXCEPT THE OUTPUT IS SENT TO THE */
/* SCREEN IN GRAPHICS MODE AT THE SPECIFIED CO-ORDINATE. */
/***/

int gprintf(int *xloc, int *yloc, char *fmt,...)
{
va_list argptr; /* Argument list pointer */
char str[140]; /* Buffer to build sting into */
int cnt; /* Result of SPRINTF for return */
va_start(argptr, format); /* Initialize va_ functions */
cnt = vsprintf(str, fmt, argptr); /* prints string to buffer */
outtextxy(*xloc, *yloc, str); /* Send string in graphics mode */
yloc += textheight("H") + 2; / Advance to next line */
va_end(argptr); /* Close va_ functions */
return(cnt); /* Return the conversion count */

}

C-8

Appendix D - The Test Problems That We Generated

Randomly Generated Sets:

SET#1 SET #2 SET #3
104, 96, 84 104, 96, 84 104,96, 84
1.3,5,7,51 1.3,5,7,200 1.3,5,7,200
2. 20,4, 6, 90 2.9,11,2,290 2.9,11,2,29
3.11,21,16,80 3.14, 6, 8, 300 3.14, 6, 8,30
4.51,2,60,80 4.1,4,19,748 4.1,4,19,51
5. 6,17, 8, 6 5.10,13,21,190 5.10,13,21,12

6. 27,23, 34, 5
7.12, 9,13,10
8. 24,15,19, 50
9.5,16,9,100
10. 10, 20, 5,100
11.9,18,15,50

SET #4 SET #5 (Worst Case)
104, 96, 84
1.1,2,3,200
2. 2,4, 5, 200
3.6,7,1,200
4. 6, 8, 2, 29
5.11,2,3,29
6. 9, 4, 2, 29
7. 14, 5, 3, 30
8. 10, 4, 6, 30
9.11,8,3,30
10.1,2,19,50
11.8,13,11,50
12.1,3,21,10
13. 8, 9, 10, 30
14.7,13,31,115
15. 12,66,3,30
16.4,15,19,90
17. 5,16, 9,100
18.10,2,5,100
19. 10,10,1, 90
20. 9,18,15, 50
21.6,9,14,1

104 96 84
1.1,2,3,1
2. 4, 5,6,1
3. 7, 8,9,1
4.10,11,12,1 .
5. 13,14,15,1
6. 16,17,18,1
7.19,20,21,1
8. 22,23, 24,1
9. 25,26, 27,1
10.28,29, 30,1
11.31,32,33,1
12.34,35,36,1
13.37,38,39,1
14.40,41,42,1
15.43,44,45,1
16.46,47,48,1
17.2,3,4,1
18.5,6,7,1
19.8,9,10,1
20.11,12,13,1
21.14,15,16,1
22.17,18,19,1
23.20,21,22,1
24. 23,24,25,1
25.26 27 28 1
26.29 30 31 1
27. 32 33 34 1
28. 35 36 37 1
29. 38 39 40 1
30.41 42 43 1
31.4445 46 1

D-l

Sets Generated by Dividing Into:

Distributor's Pallet Packing Problem Samples:

SET #6 SET #7 SET #8
104, 96, 84 104,96,84 104, 96, 84
1.70,104,24,4 1.70,50,24,4 1.70,45,24,4
2. 14, 104, 48, 2 2. 70, 54,24,4 2. 70, 59,24,4

3.14,104,48,2 3.14,40,48,2
4.14, 64,48,2

SET #9 SET #10 SET #11
104, 96, 84 104, 96, 84 104, 96, 84
1.70,45,24,4 1.28,32,18,9 1.19,20,42,2
2. 70, 30,24,4 2.24,21,35,16 2. 25,20, 30,1
3. 70, 29, 24, 4 3. 19, 26, 20, 4 3.25,20,25,1
4. 14,40, 48, 2 4.19,26,16,16 4. 25, 20, 29,1
5. 14, 32, 48, 2 5.16,26,20,4 5.8,20,21,4
6. 14, 32, 48,2 6. 20, 20, 26,1 6. 36,46, 84,1

7. 16,14, 25, 36 7. 16, 46,10,2
8. 16,46,32,2
9. 20, 30,15, 1
10. 20, 30, 69,1
11.20,30,21,4
12. 12, 30, 7,12
13. 52, 60, 42, 2
14.26,36,21,4
15.26,36,84,1

Manufacturer's Pallet Packing Problem Samples:

SET #12 SET #13 SET #14
104 96 84
1.14,13,8,576

104 96 84
1.14,13,4,1152

104 96 84
1.4,6,7,4992

SET #15 SET #16
104 96 84
1.14,13,2,576
2. 21,13,4, 576

104 96 84
1.4,6,7,2496
2.14,13, 8,288

D-2

Appendix E - Solutions of B/R Test Sets

BOX SET BR #1: 3 DIFFERENT BOX TYPES

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)
1 112 104 88.47 89.52 1
2 138 131 87.21 88.21 1
3 127 117 89.27 89.64 0
4 197 186 91.13 91.29 2
5 136 127 90.87 91.34 1
6 147 116 87.01 87.16 1
7 126 84 86.46 86.63 1
8 180 170 92.95 93.18 1
9 101 92 87.32 88.03 0
10 130 121 92.06 92.45 1
11 102 93 89.58 90.66 0
12 104 91 91.37 91.64 1
13 284 276 94.01 94.15 4
14 132 118 90.54 91.77 1
15 119 98 83.62 83.75 0
16 159 143 85.73 85.90 1
17 213 198 91.82 92.35 2
18 82 70 88.93 90.32 0
19 130 102 88.83 88.91 0
20 88 78 87.43 87.62 0
21 79 73 90.44 90.67 0
22 116 101 88.52 89.05 0
23 128 114 95.29 95.60 0
24 114 102 88.14 88.60 1
25 139 128 91.19 91.23 0
26 124 110 88.84 89.24 0
27 103 79 83.73 84.36 1
28 111 100 82.52 83.15 1
29 109 100 88.34 88.59 0
30 405 354 91.51 91.67 10
31 129 116 90.23 90.35 1
32 155 148 95.21 95.35 1
33 282 261 92.16 92.62 3
34 160 146 89.32 90.19 2
35 150 137 90.15 90.42 0
36 172 163 87.71 88.62 1
37 99 87 89.34 89.76 1
38 93 81 87.58 87.77 0

E-l

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

39 243 229 91.87 92.16 2

40 107 98 89.93 90.33 0

41 109 91 87.69 87.81 0

42 168 152 90.43 90.47 1

43 141 135 90.94 91.60 1

44 142 121 83.97 84.35 0

45 140 133 90.48 90.71 0

46 116 89 89.16 90.21 1

47 137 126 91.86 92.63 0

48 153 141 90.76 90.86 1

49 86 78 83.96 84.44 1

50 168 161 90.04 90.54 1

51 129 113 91.05 91.25 0

52 187 174 90.06 90.08 1

53 170 152 90.57 90.67 1

54 142 125 84.96 84.96 0

55 114 104 87.46 88.07 0

- 56 408 389 93.51 93.76 8

57 124 114 91.31 91.76 0

58 92 87 92.85 92.91 0

59 195 179 90.31 90.33 2

60 105 90 90.76 90.90 0

61 101 93 86.52 87.89 0

62 120 106 86.54 86.87 1

63 94 79 78.90 79.08 0

64 139 111 88.43 88.45 1

65 476 437 94.39 94.39 12

66 145 132 89.37 89.82 0

67 221 194 86.98 87.31 3

68 238 216 89.66 89.73 3

69 144 125 82.80 83.57 1

70 163 148 87.26 87.77 1

71 96 84 86.17 86.46 0

72 74 63 86.15 86.51 0

73 127 115 90.12 90.49 0

74 132 110 86.06 86.66 0

- 75 137 128 92.24 92.46 1

76 269 248 91.49 91.80 4

77 194 178 93.36 93.55 2

78 169 153 87.86 87.92 1

79 200 179 84.90 85.07 1

80 133 121 90.05 90.09 0

81 73 65 88.15 88.92 0

E-2

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)
82 164 147 90.33 90.80 2
83 120 103 86.19 86.82 0
84 69 60 88.03 88.10 0
85 319 307 94.99 95.09 5
86 156 126 87.28 87.99 0
87 98 91 85.51 85.56 1
88 126 110 85.06 85.12 0
89 96 87 87.98 88.50 1
90 90 83 89.84 90.45 0
91 238 214 90.68 90.94 1
92 88 73 88.63 88.75 0
93 100 90 86.60 86.70 0
94 133 123 86.45 87.32 1

95 139 124 89.89 90.81 0
96 182 165 88.87 89.01 1
97 140 123 87.46 87.80 1

98 122 109 89.98 89.99 1
99 154 144 86.32 86.34 0

100 214 200 91.22 91.61 2

BOX SET BR #2: 5 DIFFERENT BOX TYPES

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)
1 81 73 90.70 91.78 0
2 114 106 88.66 88.73 0
3 166 149 87.74 88.42 2
4 201 181 90.71 91.67 3
5 117 100 88.22 88.47 0
6 142 127 87.01 87.10 1
7 166 148 86.88 88.27 2
8 122 109 89.88 89.99 1

9 118 96 87.78 87.80 1
10 174 166 87.51 88.37 2
11 94 82 89.16 89.45 1
12 86 69 87.05 87.27 0
13 228 191 91.89 92.20 4
14 95 82 92.25 92.64 0
15 127 110 87.04 87.26 2

16 163 136 86.49 87.32 2
17 112 106 84.89 85.15 1

18 98 81 89.91 90.27 0

E-3

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

19 143 106 87.56 87.99 2

20 120 93 89.52 89.58 1

21 84 73 88.45 88.79 1

22 100 88 86.50 88.35 1

23 120 108 87.38 88.63 1

24 93 76 85.08 86.42 0

25 152 136 90.23 90.53 2

26 169 156 90.79 91.54 1

27 114 89 85.75 86.07 1

28 122 114 87.51 87.80 1

29 156 145 85.95 86.08 2

30 196 191 92.23 92.70 1

31 142 126 88.42 88.47 1

32 142 125 89.49 89.72 2

33 116 110 90.31 92.01 1

34 156 139 89.23 89.47 2

35 147 139 93.98 94.47 2

36 104 95 88.88 88.92 1

37 105 88 89.16 90.24 1

38 116 107 87.70 88.14 1

39 266 246 93.82 93.91 5

40 96 78 87.80 88.81 0

41 98 94 91.71 93.54 1

42 158 133 89.75 89.77 1

43 102 91 89.70 90.22 0
44 129 114 87.22 87.81 1

45 161 139 90.19 90.99 2

46 101 89 91.78 92.39 0
47 160 149 90.41 90.56 1

48 139 117 88.35 88.85 1

49 94 85 88.87 89.88 1

50 155 146 89.70 89.90 2

51 152 139 91.39 92.08 1

52 101 83 88.92 89.00 0

53 141 129 89.67 89.69 1

54 141 120 89.39 89.49 1

55 117 101 85.17 85.72 1

56 181 172 92.70 92.72 2
57 159 136 89.44 89.92 1

58 114 110 91.51 92.38 1

59 201 184 91.85 92.25 3

60 113 99 88.86 89.23 1

61 83 65 84.98 85.64 0

E-4

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

62 109 92 88.49 88.58 1

63 120 110 90.01 91.26 1

64 122 112 85.88 86.54 1

65 187 174 88.35 89.49 2

66 133 115 91.15 92.40 1

67 184 160 87.95 88.30 2

68 130 117 87.16 88.15 1

69 146 135 89.75 89.82 1

70 123 108 87.45 87.57 1

71 122 111 87.24 87.79 1

72 88 67 88.03 88.05 0

73 132 117 88.12 88.36 2

74 124 108 86.34 86.41 1

75 163 149 88.78 89.17 1

76 188 173 91.58 91.97 2

77 202 183 92.24 92.62 3

78 191 170 88.25 88.41 3

79 206 187 91.52 91.70 3

80 116 98 87.99 88.32 1

81 86 75 88.45 89.36 1

82 149 132 89.31 89.93 1

83 136 122 88.77 89.41 1

84 85 73 87.22 87.42 0

85 209 201 91.78 92.06 2

86 160 131 90.70 90.95 1

87 102 88 86.81 87.43 1

88 140 119 87.32 87.73 1

89 100 85 84.84 84.95 0

90 82 68 87.33 87.85 0

91 166 158 89.23 89.38 1

92 81 66 87.20 87.66 0

93 85 73 89.41 89.42 1

94 168 138 91.45 91.51 1

95 149 136 90.27 90.68 1

96 202 190 89.98 90.05 2

97 165 147 87.87 88.04 2

98 138 119 92.43 92.89 2

99 174 159 89.49 89.62 2

100 139 131 89.15 89.68 1

E-5

BOX SET BR #3: 8 DIFFERENT BOX TYPES

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

1 94 86 88.59 88.88 1

2 115 105 88.00 88.19 1

3 143 117 86.78 86.80 3

4 185 159 86.67 87.02 4

5 113 93 88.61 88.76 1

6 143 125 87.48 87.86 2

7 144 128 86.56 86.88 2

8 104 85 88.68 89.96 1

9 133 118 87.65 87.74 2

10 180 161 87.06 87.97 5

11 119 103 90.61 91.14 2

12 103 90 85.21 85.54 1

13 199 187 88.84 89.25 4

" 14 104 94 90.78 90.90 1

15 103 85 87.56 87.82 1

16 128 117 89.03 89.70 1

17 86 80 84.51 85.09 0

18 85 78 88.03 88.83 0

19 176 157 89.38 89.67 2

20 135 107 90.69 91.04 2

21 94 80 88.66 88.87 1

22 111 101 88.76 88.88 1

23 130 121 87.39 88.31 1

24 112 96 88.69 89.10 1

25 135 111 88.59 89.16 2

26 161 146 88.81 89.10 2

27 120 105 87.34 87.36 1

28 143 122 86.01 86.34 2

29 194 173 88.18 88.51 3

30 161 144 88.67 88.73 1

31 136 119 87.63 88.15 3

32 141 127 88.44 89.18 2

33 131 121 90.08 90.34 2

34 164 149 89.20 89.91 4

35 149 136 90.22 90.55 2

36 111 101 86.99 87.43 1

37 112 100 89.79 90.38 1

38 103 94 86.67 87.30 1

39 232 217 89.72 90.30 5

40 86 73 86.56 87.31 0
41 124 107 90.25 91.27 1

E-6

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

42 131 117 89.80 90.77 2

43 92 82 86.83 88.02 0

44 142 117 85.65 85.98 3

45 147 129 89.50 90.35 2

46 110 97 89.25 89.49 2

47 148 133 86.55 86.96 2

48 103 95 87.96 88.95 1

49 105 96 88.90 89.39 1

50 136 115 88.98 89.09 2

51 165 143 91.06 91.44 3

52 143 128 89.68 90.18 1

53 100 85 87.80 88.21 1

54 178 169 90.70 91.14 3

55 154 143 86.68 86.79 3

- 56 212 196 89.38 90.29 4

57 118 107 87.80 87.87 1

58 87 80 88.21 88.66 0

59 216 194 87.33 87.43 5

60 114 92 87.23 87.66 1

61 90 76 88.61 89.15 1

62 114 103 85.16 85.34 1

63 124 113 89.15 90.31 2

64 134 123 87.09 87.11 2

65 140 130 89.48 90.37 2

" 66 97 89 87.66 88.19 1

67 169 148 87.96 88.09 3

68 119 103 89.59 90.86 1

69 162 144 90.42 90.92 3

70 108 100 87.71 87.91 2

71 131 117 86.76 86.92 2

72 138 125 89.54 90.17 2

73 105 94 85.35 85.71 1

74 114 104 88.71 89.15 1

75 139 130 87.46 88.40 2

76 144 127 88.92 89.97 1

77 201 182 91.70 91.74 4

78 155 140 88.81 89.00 3

79 195 179 90.86 90.94 3
80 114 97 88.63 89.30 2

81 80 73 88.92 89.38 1

82 174 160 87.92 88.45 3

83 140 122 90.25 90.41 2

84 101 95 92.14 92.48 1

E-7

-

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

85 146 140 89.55 89.67 1

86 155 125 89.57 90.07 2

87 126 113 88.32 88.88 1

88 167 143 88.11 88.44 3

89 90 80 86.87 87.17 1

90 84 72 86.27 86.38 1

91 183 166 91.01 91.63 4

92 97 82 89.84 91.20 1

93 84 73 85.62 86.35 0

94 154 145 88.21 88.47 2

95 178 160 89.46 89.60 3

96 197 177 91.27 91.35 4

97 166 154 87.66 87.86 2

98 125 104 90.77 90.78 1

99 110 98 86.82 88.09 1

100 137 128 88.74 88.82 2

BOX SET BR #4: 10 DIFFERENT BOX TYPES

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

1 106 94 88.54 90.72 1

2 123 109 87.32 88.26 1

3 135 118 87.42 87.58 3

4 169 145 88.52 88.71 3

5 130 118 89.26 89.74 1

6 132 112 87.04 87.46 3

7 138 116 88.42 88.77 2

8 107 94 89.36 89.50 1

9 149 133 87.93 88.65 2

10 133 114 86.85 87.87 3
11 126 114 90.14 90.77 2

12 114 101 88.13 88.34 1

13 169 150 87.18 87.47 4

14 105 98 89.80 90.40 1

15 100 86 89.64 90.04 1

16 138 116 88.02 88.29 3
17 91 83 88.38 89.67 1

18 75 63 87.18 88.90 1

19 138 128 87.15 88.11 2

20 139 121 89.58 89.68 2

21 114 98 86.72 87.14 1

E- 8

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

22 111 104 89.10 89.26 2

23 98 72 87.22 89.55 1

24 137 116 85.11 85.15 3

25 133 122 88.07 88.45 1

26 158 143 89.00 89.09 2

27 119 111 87.45 88.51 1

28 175 161 86.72 86.83 3

29 127 113 86.62 86.85 1

30 151 132 88.26 88.40 3

31 145 129 88.62 88.70 3

32 156 139 87.20 87.72 3

33 132 105 89.26 89.46 1

34 136 124 89.80 90.16 3

35 151 131 89.26 89.72 3

36 131 113 89.60 89.73 2

37 136 122 88.94 90.01 2

38 115 98 86.25 86.56 2

39 225 208 90.11 90.17 6

40 102 82 84.38 84.58 1

41 113 89 89.49 89.75 1

42 121 100 87.62 87.78 2

43 90 68 86.23 86.52 1

44 138 114 85.87 86.05 4

45 158 141 88.62 88.63 3

46 98 87 89.88 90.00 1

47 138 122 86.40 86.81 2

48 109 96 88.32 89.19 1

49 106 91 89.00 90.43 1

50 167 152 88.95 89.55 4

51 184 166 91.87 92.23 5

52 143 124 89.23 89.39 2

53 101 78 87.20 87.71 1

54 172 155 90.02 90.41 4

55 143 125 85.69 85.92 3

56 233 213 91.04 92.02 6
57 96 85 87.53 88.23 1

58 106 95 90.05 90.37 1

59 199 168 88.85 88.87 6

60 125 113 87.15 87.36 2

61 121 105 89.14 89.76 1

62 125 118 88.22 88.67 2

63 100 82 90.46 90.56 1

- 64 118 106 86.36 86.97 1

E-9

-

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

65 156 148 90.52 90.59 3

66 105 92 87.00 87.08 1

67 170 154 87.84 88.42 4

68 103 87 85.00 85.49 2

69 157 146 89.10 89.24 3

70 117 104 86.29 86.65 2

71 138 122 86.05 86.17 3

72 129 114 86.47 86.59 2

73 117 103 86.26 86.69 1

74 91 72 86.70 87.72 1

75 148 125 88.50 88.62 2

76 118 108 89.96 90.72 1

77 179 150 88.58 89.55 4

78 164 149 90.49 90.84 3

79 217 198 90.72 91.05 5

80 132 121 87.43 87.75 2

81 104 96 88.51 88.68 1

82 153 143 88.71 89.89 3

83 128 113 88.84 88.89 2

84 125 104 90.68 91.66 2

85 123 115 86.03 86.34 1

86 152 138 87.40 87.70 3

87 108 94 85.45 87.08 2

88 178 154 87.13 87.38 4

89 93 82 86.33 87.11 1

90 95 88 87.15 88.44 1

91 134 122 90.69 90.82 2

92 93 77 89.02 90.19 1

93 78 73 88.35 89.45 1

94 141 125 87.68 87.82 3

95 181 167 87.24 87.90 4

96 149 131 88.01 88.82 2

. 97 142 132 87.22 87.78 2

98 116 103 89.69 90.27 2

99 134 123 88.99 89.52 2

100 144 132 90.06 90.88 3

-

E- 10

BOX SET BR #5: 12 DIFFERENT BOX TYPES

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)
1 98 84 88.24 89.41 1
2 138 131 86.82 88.05 3
3 133 118 87.59 87.65 4
4 142 130 86.52 86.55 3
5 129 118 88.68 89.39 2
6 140 125 87.51 87.99 3
7 132 117 87.83 88.14 3
8 98 91 88.84 89.62 2
9 135 121 86.74 87.13 2
10 133 113 87.19 87.34 3
11 144 131 89.53 89.57 3
12 109 92 86.16 86.43 2
13 199 179 88.15 88.70 7
14 123 115 87.74 88.76 2
15 104 92 84.67 86.17 2
16 118 106 85.31 86.05 2
17 108 100 88.87 89.37 2
18 87 76 88.20 88.48 1
19 142 132 88.26 89.24 2
20 138 124 88.24 89.21 3

- 21 128 120 89.36 89.54 3
22 116 94 87.69 87.71 2
23 143 124 87.91 89.25 3
24 111 97 86.37 86.86 2
25 143 123 85.88 86.59 3
26 161 147 89.79 89.82 3
27 120 110 86.39 87.09 1
28 180 161 87.44 87.59 4
29 120 104 87.51 89.61 2
30 135 120 88.29 89.42 3
31 147 127 88.07 88.51 3
32 163 150 87.62 87.75 4
33 141 133 88.52 88.79 2
34 115 99 88.19 88.48 2
35 143 130 88.71 89.12 3
36 124 113 87.72 87.95 2
37 122 109 89.90 91.01 2
38 118 108 84.80 85.72 2
39 196 174 88.58 88.86 7

. 40 106 93 85.87 86.14 2
41 133 114 87.70 88.07 2

E-ll

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

42 113 94 87.78 88.33 2

43 113 102 86.79 88.26 2

44 136 118 86.25 86.50 3

45 171 153 88.85 89.53 5

46 99 89 88.48 89.18 2

47 146 125 86.38 86.74 3

48 111 99 87.63 88.08 2

49 104 95 86.22 87.13 1

50 172 152 88.22 88.39 5

51 195 170 88.94 89.12 6

52 139 117 88.77 89.07 3

53 122 110 86.03 86.66 2

54 183 158 89.79 89.87 5

55 136 124 86.31 86.53 3

56 218 206 88.14 88.15 8

57 104 78 86.52 87.14 1

58 115 105 88.76 90.05 2

59 154 142 88.70 89.05 3

60 127 115 85.43 85.90 2

61 106 93 88.86 90.31 1

62 131 122 87.01 88.47 3

^ 63 105 98 89.20 89.87 2

64 115 103 89.23 90.44 2

65 160 136 89.24 89.43 4

66 108 99 84.66 85.57 2

67 141 120 86.74 87.12 3

68 103 97 89.19 90.40 1

69 158 140 86.42 86.69 5

70 109 98 87.31 87.79 3
71 141 127 84.26 84.36 4

72 135 122 87.26 87.34 3

73 127 116 85.37 86.06 2

74 101 91 87.28 87.50 2

75 116 108 88.34 89.72 2

76 113 93 89.66 90.05 1

77 171 154 89.26 89.43 5

78 163 148 87.60 88.27 4

79 190 178 88.69 88.88 5
80 143 122 86.03 86.42 3

81 101 86 87.00 87.18 1
82 135 123 87.80 88.20 2

83 127 108 89.18 89.54 2

84 138 129 88.83 89.51 3

E-12

SET#
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

TOTAL
NUMBER
BOXES

126
126
113
171
93
99
138
116
84
130
186
155
137
133
135
135

PACKED
NUMBER OF

BOXES
112
115
89
153
73
90
126
101
75
124
175
141
119
125
128
122

% PALLET
VOLUME

UTILIZATION
86.57
89.36
87.06
87.80
87.15
87.08
87.54
87.35
84.01
88.81
86.99
87.27
86.97
88.47
89.93
87.65

% PACKED
VOLUME OF
ALL BOXES

86.80
90.52
87.47
87.83
87.52
87.21
87.91
88.97
84.97
89.51
87.22
87.56
87.89
88.86
91.33
87.99

SOLUTION
TIME

(SECOND)

BOX SET BR #6: 15 DIFFERENT BOX TYPES

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)
1 129 116 87.35 87.58 3
2 149 136 87.90 88.04 4
3 138 119 86.92 87.15 4
4 144 128 87.05 87.27 4
5 145 128 88.51 90.17 3
6 138 123 86.54 86.80 4
7 123 113 89.00 90.03 2
8 104 94 88.14 90.03 2
9 124 110 85.78 86.24 3
10 144 127 85.39 85.98 4
11 131 122 86.68 86.87 2
12 122 105 86.21 86.39 3
13 203 186 88.44 89.32 9
14 143 135 88.64 88.69 4
15 95 82 86.53 87.04 1
16 122 107 86.71 87.57 3
17 121 102 87.14 87.71 3

. 18 88 75 87.09 87.12 2
19 132 118 87.64 87.86 3
20 140 119 89.83 90.11 4

E-13

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

21 129 114 86.99 88.64 3

22 131 123 88.92 89.56 3

23 116 111 88.29 90.17 3

24 105 89 85.60 86.20 2

25 138 121 84.60 84.87 4

26 165 149 87.55 87.64 5

27 128 117 87.40 87.51 3

28 152 134 87.08 87.53 4

29 138 130 87.23 87.46 3

30 135 123 88.93 89.22 4

31 159 142 88.49 88.68 6

32 143 132 87.34 87.37 4

33 141 122 90.52 90.95 4

34 113 94 87.58 89.27 3

35 152 131 89.10 89.81 5

36 113 103 87.89 88.11 2

37 106 94 88.20 89.08 2

38 131 116 86.00 86.34 3

39 183 168 88.92 89.25 7

40 102 89 86.24 86.71 3

41 131 109 88.57 88.66 3

42 125 113 87.09 87.26 3

43 108 98 86.07 86.28 3

44 140 121 87.21 87.55 4

45 157 137 87.41 88.11 5

46 111 98 89.08 89.63 2

47 147 130 85.89 85.96 5

48 110 98 88.82 89.20 2

49 108 102 89.43 91.03 2

- 50 145 136 88.49 88.51 4

51 175 154 88.47 88.85 6

52 140 130 86.01 86.20 4

53 128 97 87.61 88.29 3

54 165 155 88.05 88.14 5

55 144 126 85.36 85.63 4

56 153 138 87.96 88.36 4

57 111 104 86.64 86.68 3

58 116 109 89.35 89.58 2

59 126 105 85.81 86.65 3

60 132 117 86.91 87.14 3

61 110 96 87.11 87.34 2

62 123 110 86.50 86.79 3

E-14

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

63 114 103 88.08 88.13 3

64 125 110 85.78 87.06 2

65 156 132 91.31 91.42 4

66 116 101 86.95 87.44 4

67 150 136 87.82 88.17 5

68 103 91 86.68 88.02 2

69 167 147 85.83 86.65 7

70 106 87 86.78 86.90 2

71 137 124 88.93 89.06 4

72 132 122 87.18 87.40 4

73 114 103 85.90 86.50 2

74 100 88 86.74 88.17 2

75 123 104 87.56 87.83 2

76 122 110 88.46 88.46 3

77 158 138 86.98 87.21 4

78 155 143 87.83 88.07 4

79 168 150 88.53 88.64 4

80 158 142 86.67 87.29 4

81 94 79 85.73 86.23 2

82 139 127 87.19 88.46 3

83 129 112 87.19 87.91 3

84 137 116 87.10 87.38 4

85 128 111 88.17 88.95 3

86 138 114 87.96 88.06 3

87 108 99 86.91 87.48 2

88 171 150 85.73 85.90 7

89 100 90 86.52 87.62 2

90 85 77 86.45 86.68 2

91 123 112 85.88 86.08 3

92 114 102 88.15 88.30 2

93 86 74 84.32 85.05 1

94 138 122 87.32 88.22 3

95 155 143 87.49 87.54 5

96 131 112 90.31 90.35 2

97 141 124 88.49 89.34 4

98 147 129 88.06 88.32 5

99 120 114 89.87 90.26 2

100 139 126 86.02 86.66 4

E-15

BOX SET BR #7: 20 DIFFERENT BOX TYPES

" SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

1 110 97 86.13 88.00 3

2 129 117 86.10 87.42 4

3 126 109 86.89 87.06 5

4 153 138 86.72 86.72 5

5 126 116 86.61 86.93 4

6 156 135 88.36 88.65 7

7 109 94 86.73 86.97 3

8 119 105 87.69 87.81 4

9 129 116 86.25 86.82 4

10 135 119 87.14 87.27 5

11 143 126 87.95 88.21 5

12 146 133 86.73 86.80 6

13 172 158 87.75 88.64 9

14 119 111 88.19 88.41 3

15 117 106 85.50 85.52 4

16 118 106 88.16 88.31 3

17 125 113 85.88 87.09 4

18 103 91 87.04 87.26 3

19 135 121 88.20 89.36 5

20 130 116 88.98 89.32 4

21 133 126 88.33 89.50 5

22 130 124 87.39 87.69 4

23 157 135 86.07 86.63 7

24 105 95 87.27 87.66 2

25 130 113 85.04 85.71 4

26 151 134 86.04 86.13 6

27 121 116 87.88 88.24 3

28 144 134 88.24 89.17 5

29 117 105 85.90 86.24 3

30 143 127 86.88 87.09 6

31 161 144 87.02 87.22 8

32 149 133 88.14 88.53 7

33 142 120 89.04 89.41 5

34 106 98 86.51 87.32 3

35 162 139 88.05 88.10 6

36 133 123 87.09 88.12 5

37 99 88 87.51 88.31 3

38 120 107 86.42 86.73 4

39 167 143 87.35 88.00 8

40 119 109 86.98 87.18 3

E-16

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

41 127 108 87.78 88.84 4

42 108 95 87.02 88.00 3

43 96 84 87.70 89.18 2

44 156 139 87.02 87.92 6

45 140 122 85.80 86.79 4

46 116 102 87.18 88.15 3

47 150 135 86.97 87.60 6

48 113 104 88.02 89.18 3

49 131 119 87.56 88.09 4

50 149 135 89.17 89.70 5

51 166 144 88.08 88.25 9

52 138 116 86.63 86.88 5

53 122 105 86.59 86.78 3

54 143 136 87.77 89.25 5

55 142 123 88.11 88.68 5

56 162 150 87.77 88.30 7

57 127 113 86.09 86.48 4

58 116 108 90.16 91.65 3

59 129 112 85.83 86.71 4

60 126 103 86.47 86.56 5

61 100 85 86.55 88.36 3

62 126 112 86.68 87.08 4

63 107 94 87.13 88.18 3

64 108 89 88.02 88.59 3

65 168 160 90.03 90.20 7

66 117 109 84.30 85.05 4

67 162 149 86.90 86.91 6

68 105 95 87.77 87.85 3

. 69 155 134 85.59 85.78 7

70 111 97 84.91 85.38 4

71 127 111 87.65 87.93 4

72 127 114 85.60 86.20 4

73 121 108 84.87 85.14 4

74 108 100 87.68 88.29 3

75 129 116 88.95 89.12 4

76 105 86 87.37 87.44 3

77 158 137 86.83 87.30 6

78 142 129 85.34 86.22 4

79 166 145 86.20 86.50 6

80 128 109 86.75 86.82 4

81 110 92 85.21 85.65 3

82 131 119 87.87 88.51 4

E-17

SET#

TOTAL
NUMBER
BOXES

PACKED
NUMBER OF

BOXES

% PALLET
VOLUME

UTILIZATION

% PACKED
VOLUME OF
ALL BOXES

SOLUTION
TIME

(SECOND)

83 139 118 86.73 87.15 5

84 154 136 88.10 88.72 6

85 108 99 86.11 87.93 3

86 134 109 88.50 90.17 4

87 117 105 86.14 86.38 3

88 142 119 86.52 87.81 5

89 105 94 88.66 88.74 3

90 97 86 88.11 88.35 3

91 106 93 85.27 86.05 2

92 118 109 89.09 89.19 4

93 90 75 84.49 84.78 3

94 134 125 87.13 87.52 4

95 146 124 86.52 87.20 6

96 151 135 87.68 87.96 6

97 124 111 86.25 87.10 4

98 144 127 88.50 88.58 6

99 145 132 86.52 87.25 6

100 122 107 86.53 86.79 4

E-18

Bibliography

Askin, Ronald G., and Charles R. Standridge. Modeling and Analysis of Manufacturing
Systems. New York: John Wiley and Sons, Inc., 1993, (320-321).

Ballew, P. Brian. The Distributor's Three-Dimensional Pallet-Packing Problem: A
Mathematical Formulation and Heuristic Solution Approach. MS Thesis,
AFIT/GOR/ENS/00M-02. Graduate School of Engineering, Air Force Institute
of Technology (AU), Wright Patterson AFB OH, March 2000.

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. C, and Stewart, W. R., Jr. Journal
of Heuristics, 1995,1:9-32.

Bischoff, E., and Dowsland, W. B., An application of the micro to product design and
distribution. Journal of the Operational Research Society, 1982, 33 (3), 271-281.

Bischoff, E. E., and Marriott, M. D., A comparative evaluation of heuristics for Container
loading. European Journal of Operational Research, 1990,44 (2), 267-276.

Bischoff, E. E., and Ratcliff, M. S. W. Issues in the development of approaches to
- container loading. OMEGA. 1995.23(41:377-390.

Bischoff, E. E., F. Janetz, and M. S. W. Ratcliff. "Loading pallets with non-identical
Items." European Journal of Operational Research 84: 681-692 (1995).

Bortfeld, A., and Gehring, H. Ein tabu search-Verfahren mit schwach heterogenem
Kistenvorrat. FB Wirtschaftswissenschaft, Fern Universität Hagen, 1997,
Technical Report 240.

Chocolaad, Christopher A. Solving Geometrie Knapsack Problems Using Tabu Search
~ Heuristics. MS Thesis, AFIT/GOR/ENS/98M-05. Graduate School of

Engineering, Air Force Institute of Technology (AU), Wright Patterson AFB OH,
March 1998.

CAPE Systems, Inc., CAPE PACK'99 and Truckfill packaging design and pallet loading
softwares, http://www.capesvstems.com. 24 November 2000.

Chen, C.S., Lee, S. M., Shen, Q. S., An analytical model for container loading problem.
European Journal of Operational Research 80,1995, 68-76.

Coffman, E. G. JR., and Shor, P. W. Average-case analysis of cutting and packing
in two-dimensions. European Journal of Operational Research, 1990,44 (2), 134-
145.

BIB-1

Computer Sciences Corporation. Unit Type Code Development, tailoring, and
Optimization (UTC-DTO) Phase 2 Final Report. Contract DC A 100-94-D-OO144.
Falls Church VA: Defense Enterprise Integration Services, December 1997.

Faina, L., A global optimization algorithm for the three-dimensional packing problem.
European Journal of Operational Research 126,2000, 340-354.

Gehring, H., Menschner, K., and Meyer, M., A computer-based heuristic for packing
pooled shipment containers. European Journal of Operational Research. 1990,44
(2), 277-289.

Gehring, H., and Bortfeld, A. Ein genetischer Algorithmus für das Containerbe-
Ladungsproblem. FB Wirtschaftswissenschaft. Fern Universität Hagen, 1996,
Technical Report 227.

George, J. A., and Robinson, D. F., A heuristic for packing boxes into a container.
Computers and Operational Research. 1980,7,147-156.

Glover, F., Future Paths for Integer Programming and Links to Artificial Intelligence,
Computer and Operations Research. 1986, Vol. 13, 533-549 (9-21)

Glover, F., Laguna, M., Tabu Search. USA: Kluwer Academic Publishers, 1997.

Haessler, R. W., and Talbot, F. B., Load planning for shipments of low density products.
European Journal of Operational Research. 1990, 44 (2), 289-299.

Han, C. P., Knott, K., and Egbelu, P. J., A heuristic approach to the three-dimensional
cargo-loading problem. International Journal of Production Research. 1989,27
(5), 757-774.

Imperial College Management School. 2001,
http://mscmga.ms.ic.ac.uk/ieb/orlib/thpackinfo.html. 13 January 2001

Liu, N. C, and Chen, L. C, A new algorithm for container loading. Compsac 81-5
International Computer Software and Applications Conference Papers (Chicago:
IEEE), 1981,292-299.

Loh, H. T., and Nee, A. Y. C. A packing algorithm for hexahedral boxes. In Proceedings
of the Industrial Automation '92 Conference. Singapore. 1992, pages 115-126.

Manship, Wesley E., and Jennifer L. Tilley. A Three-Dimensional 364L Pallet Packing
Model and Algorithm. MS Thesis, AFIT/GIM/LAL/98S-3. School of Systems
and Logistics, Air Force Institute of Technology (AU), Wright Patterson AFB
OH, September 1998.

BIB-2

Magic Logic Optimization, Inc., Cube-IQ Load Optimization Software.
http://www.magiclogic.com/cube-iq.html 6 June 2000.

Martello Silvano, Pisinger, David, and Vigo, Daniele. The Three-Dimensional Bin
Packing Problem. Operations Research. 2000 Informs. Vol. 48, No. 2, March-
April 2000, pp. 256-267.

Mohanty, B. B., Mathur, K., Ivancic, N. J., Value considerations in three-dimensional
packing - A heuristic procedure using the fractional knapsack problem. European
Journal of Operational Research 74.1994,143-151.

Ngoi, B. K. A., Tay, M. L., and Chua, E. S. Applying spatial representation techniques to
the container packing problem. Int. J. Prod. Res. 1994, 32:111-123.

Ravindran, A., Phillips, Don T., Solberg, James J., Operations Research Principles and
Practice. Second Edition. U.S.A.: John Wiley & Sons, Inc., 1986.

Reeves, Colin R. Modern Heuristic Techniques for Combinatorial Problems. London:
Mc Graw-Hill Book Company, 1995,151-188.

Romaine, Jonathan M. Solving the Multidimensional Multiple Knapsack Problem with
Packing Constraints Using Tabu Search. MS thesis, AFIT/GOR/ENS/99M-15.
Graduate School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, March 1999.

Steudel, H. J., Generating pallet loading patterns: a special case of the two-dimensional
Cutting stock problem. Management Science. 1979,25 (10), 997-1004.

TASC, Inc. (8 May 1998) Interim Project Report on the Feasibility of Finding Optimal
Solutions to Three-Dimensional Packing Problems. Contract number F41624-97-
D-5002, Air Force Research Labs/HESR, Wright-Patterson AFB OH.

Taylor, Gregory S. A Pallet Packing Postprocessor for the Logistics Composite Model.
MS thesis, AFIT/GST/ENS/94M-11. Graduate School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 1994.

Terno, J., Scheithauer, G, Sommerweiß, U., and Riehme, J. An Efficient Approach for
the Multi-Pallet Loading Problem. Institute for Numerical Mathematics.
Technical University Dresden Mommsenstr. 13. D-01062 Dresden. Germany
1997.

Tinarelli, G. U., and Addonizio, M., Un problema di caricamento di containers,
Proc. AIRO. Rome. Italy 1978.

BIB-3

Vita

ILt. Erhan BALTACKXjLU was born in Ankara, Turkey. He grew up in Istanbul

and eventually graduated from Kuleli Military High School. He then attended the Turkish

Air Force Academy in Istanbul. On 30, August 1994 he received his commission as well

as his Bachelor's of Science degree in Computer Science. On 25, May 1996 he graduated

from Turkish Flight School in Izmir. He was assigned to be a C-130 pilot in Kayseri. In

August of 1999, he was assigned by the Turkish Air Force to the Air Force Institude of

Technology in pursuit of a Master's degree in Operations Research.

V-l

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

20-03-2001
2. REPORT TYPE

Master's Thesis
3. DATES COVERED (From - To)

March 2001-March 2001
4. TITLE AND SUBTITLE
THE DISTRIBUTER'S THREE-DIMENSINAL PALLET-PACKING
PROBLEM: A HUMAN INTELLIGENGE-BASED HEURISTIC
APPROACH

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Erhan BALTACIOGLU, First Lieutenant, TUAF

5d. PROJECT NUMBER
HE-AFIT-99-10

5e. TASK NUMBER
ZA

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENS/01M-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dayton Area Graduate Studies Institute
Attn: Dr. Frank Moore
3155 Research Blvd, Suite 205
 Kettering, OH 45420 (937) 781-4000

10. SPONSOR/MONITOR'S ACRONYM(S)
DAGSI

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES
14. ABSTRACT

The Distributor's Pallet Packing Problem is to load a set of distinct boxes with given dimensions on pallets or in
containers to maximize volume utilization. This problem is still in its early stages of research, but there is a high level of interest in
developing effective models to solve this NP-hard problem to reduce the time, energy and other resources spent in packing pallets.

In its search to improve operations, the Air Force is also making an effort to solve this problem. Building an
analytical model and developing a genetic algorithm approach have been tried, but the problem needs more research and there is a
need to produce realistic solutions in a reasonable amount of time.

We develop a special heuristic algorithm and code it in the C programming language. In our model, we used powerful heuristic
tools and dynamic data structure to mimic human behavior, providing a new solution approach to pallet packing. We created another
program to visualize packing results. Tests on hundreds of problems show that our model makes the most of volume utilization in
minimal time making it a leader among presented and published works. -
15. SUBJECT TERMS

Three-dimensional pallet-packing, packing problem, bin-packing problem, multi-dimensional knapsack problem,
pallet-loading problems, distributor's pallet packing problem, meta-heuristic algorithms

16. SECURITY CLASSIFICATION OF:

REPORT

u
b. ABSTRACT

u
C. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES

135

19a. NAME OF RESPONSIBLE PERSON
James T. Moore, Lt Col, USAF
19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, ext 4337 (James.Moore@afit.edu)
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

