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Abstract 

The Distributor's Pallet Packing Problem is to load a set of distinct boxes with 

given dimensions on pallets or in containers to maximize volume utilization. This 

problem is still in its early stages of research, but there is a high level of interest in 

developing effective models to solve this NP-hard problem to reduce the time, energy and 

other resources spent in packing pallets. 

In its search to improve operations, the Air Force is also making an effort to solve 

this problem. Building an analytical model and developing a genetic algorithm approach 

have been tried, but the problem requires additional research and there is a need to 

produce realistic solutions in a reasonable amount of time. 

We develop a special heuristic algorithm and code it in the C programming 

language. In our model, we used powerful heuristic tools and dynamic data structure to 

mimic human intelligence, providing a new solution approach to pallet packing. We 

created another program to visualize packing results. Tests on hundreds of problems 

show that our model makes the most of volume utilization in minimal time making it a 

leader among presented and published works. 
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THE DISTRIBUTER'S THREE-DIMENSIONAL PALLET-PACKING 

PROBLEM: A HUMAN INTELLIGENCE-BASED 

HEURISTIC APPROACH 

Chapter 1 - Background and Statement of the Problem 

1.1 Introduction 

Everyday many items are shipped from one place to another. These items are put 

in containers or pallets. To ship more items while spending less energy, time and money, 

the items should be packed optimally, or at least near optimally. This problem becomes 

even more important when we start to talk about air shipping. 

The Air Force uses standard HCU-6/E (463 L) pallets in air shipping. The length 

and the width of the pallets are 88 inches (7 feet 4 inches) and 108 inches (9 feet), 

respectively. However, only 84 inches of the length and 104 inches of the width are 

actually available. Loadmasters are required to leave the outside two inches of the pallet 

unpacked so a cargo net can securely fit around the packed boxes. The maximum height 

of a pallet is 96 inches (8 feet) for pallets loaded in the main compartment and 76 inches 

(6 feet 4 inches) for pallets loaded on the ramp (Taylor, 1994). 

By eyeballing the items to be packed, experienced Air Force loadmasters can 

efficiently pack Air Force standard HCU-6/E (463L) pallets. However, the questions are 

"How efficiently do they pack?" or "Can those items be packed more efficiently and even 

provide a reduction in the number of sorties required?" A scientific approach is required 

to answer these questions. 

For these reasons, the Air Force is in search of a model that will help efficiently 

pack the pallets and provide loadmasters with a report stating where the boxes should be 
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placed on the pallet to minimize unused space. This will save time and resources. If the 

pallets are more efficiently packed, the number of sorties flown may decrease and aircraft 

may be freed to carry other items in large-scale mobilizations (Ballew, 2000). 

1.2 Background 

This research is a follow-on of Ballew's (2000) research. He developed an 

integer programming mathematical formulation of a simplified version of the three- 

dimensional pallet-packing problem. Some of the problem's constraints were not 

included in the formulation. Unfortunately, the solver package found a local optimum to 

a simplified and small problem (just 3 boxes). The formulation of a bigger problem with 

more boxes is not practical because the number of variables and constraints increase 

incredibly fast as the number of boxes increase. Ballew did employ a simple genetic 

algorithm to solve a slightly larger but still a small problem (11 boxes) but found no 

reasonable solution within 45 minutes. 

The Air Force has sponsored research in this area on multiple occasions in search 

of a better way to pack the pallets and load the aircraft. These include an early effort by 

Taylor (1994), research on an airlift-loading model by Chocolaad (1998) and Romaine 

(1999), and a three-dimensional packing problem approach by Manship and Tilley 

(1998). None of the developed techniques are able to pack hundreds of various sized 

boxes on an HCU-6/E (463 L) pallet while considering realistic constraints. They also do 

not have acceptable solution times for this problem. 

Bischoff, Janetz, and Ratcliff (1995) developed a three-dimensional heuristic 

approach to pack multiple sized boxes on a pallet. Their algorithm packs the boxes in 
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layers allowing up to two different box types per layer; however, it gives preference to 

layers filled by a single box type. The algorithm did produce stable loads, but as the 

number of various sized boxes increased, the packing efficiency declined. 

Martello, Pisinger and Vigo (2000) developed a branch-and-bound algorithm to 

solve a three-dimensional bin-packing problem. Their solution however, is not strictly 

three-dimensional. They first construct bin slices having width W, height H, and 

different depths. The slices are then combined into three-dimensional bins. However, 

they do not include various important constraints, and they assume that no items can be 

rotated. Under these relaxed conditions, their approach had good results. 

Real world packing problems are complex and have many constraints. The boxes 

have different weights, volumes, and dimensions. The varied dimensions of the boxes 

can cause gaps in the usable packing space. Additional wasted space can be caused by 

weight balancing and box placement restrictions. Hence, in most cases, the total volume 

of the boxes packed is considerably less than the available volume of the container. Most 

research has focused on packing a certain number of boxes in a container. But in a real 

world problem, this is not always the case. One tries to pack as many boxes as a 

container can hold before moving to another container. Because this changes the domain 

space, considering this important point changes the approach that must be taken to get a 

good solution 

The three-dimensional packing problem is a natural generalization of the classical 

one- and two-dimensional problems, and therefore it is NP-hard (Reeves 1995). This 

means that, in general, optimal solutions are computationally impractical to achieve. For 

this reason, most of the studies have focused on the practical aspects of loading a 
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container and developing heuristic solutions based on the concept of filling out the 

container with boxes organized in layers, walls, and columns. In other cases, two- 

dimensional pallet packing heuristics are applied to the general three-dimensional 

container-loading problem. These heuristics are, in general, on-line packing algorithms, 

which means they pack boxes one-by-one in a given order. More precisely, when the 

algorithm is packing a box, it has information only about the boxes previously packed, 

and once a box is packed, it cannot be moved to another place. This technique is not 

efficient and is also not applicable, when applying the load balance and other constraints. 

Since the pallet-packing problem has a large solution space, it is extremely 

difficult to prove a solution is the global optimum. Only with many different sets of 

boxes can an algorithm be tested and its performance evaluated. 

1.3 Statement of the Problem 

The problem is a three-dimensional pallet-packing problem. There are basically 

two general types of pallet packing problems. They are the "manufacturer's pallet 

packing problem" and the "distributor's pallet packing problem." The 'manufacturer's 

pallet packing problem' is easier to solve since it seeks the optimum layout of identical 

rectangular boxes on a rectangularly shaped pallet. 

For the "distributor's pallet packing problem," the objective is to load boxes of 

varying dimensions onto as few pallets as possible (Askin and Standridge, 1993). This 

problem is more difficult to solve than the manufacturer's problem. For the case in 

which only one pallet is loaded, the objective is to minimize unused pallet space since Air 

Force 463 L pallets are usually "cubed out" before they are "grossed out" (Taylor, 1994). 
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This means that, in general, the total available volume of a pallet is filled before its 

weight limit is reached. Most of the time, the items packed are rectangular in shape, and 

this property makes the problem easier to solve, compared to trying to pack items with 

different shapes. 

The problem is to pack as many boxes as possible from a given set of rectangular- 

shaped items into a three-dimensional rectangular bin. The objective is to minimize the 

unused bin volume while considering many different kinds of constraints. These 

constraints are explained in the Scope and Methodology Section. The problem is 

strongly NP-hard and extremely difficult to solve in practice (Martello, Pisinger and 

Vigo, 2000). 

The purpose of this research is to develop a three-dimensional pallet-packing 

algorithm and an executable written code employing the developed algorithm. 

1.4 Scope and Methodology 

In our problem, all items are rectangular boxes. We solve this problem as a 

single-pallet packing problem, not as a multiple-pallet packing problem where an entire 

aircraft is loaded. Trying to pack all pallets to be loaded on an aircraft is more difficult to 

solve. The reason is that the balance of the aircraft has to be considered, and this means 

that the problem has to be considered as a single hierarchical problem, instead of being 

considered as a combination of several single-pallet packing problems. 

Our single pallet problem has many constraint types. The first one is that every 

box takes a unique space in the pallet, with no overlapping allowed. A second type 

prevents packing beyond the dimension limits of the pallet. Another constraint type 
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actually accounts for several different restrictions. The packing must be realistic. It must 

be stable. No overhang is allowed when the boxes are packed. For a box to be packed, 

its entire base must be on top of either the pallet or other boxes. Boxes can be rotated and 

packed with one of six different options. Heavy boxes should be packed below lighter 

ones. For flight safety reasons, the Air Force prefers the center of gravity of a loaded 

pallet to be within four inches of the center of the pallet. (TASC, 1998) 

The problem is extremely hard to solve with all the constraints stated above. 

Most approaches start simple and then add other constraints. Some simplifying 

assumptions are employed in our approach. In our approach, we initially include the first 

two constraint types.   So that every box takes a unique space in the pallet (no 

overlapping allowed) and packing beyond the dimension limits of the pallet is prevented. 

We also allow packing of the boxes in all six orientations. Before a pallet is loaded onto 

a plane, the loadmaster secures the pallet by tying down cargo nets around the load. 

Thus, in our approach the top of the load is close to level to accomodate the cargo net. 

When the cargo net is thrown over a load, level at the top, boxes do not shift or fall. 

We also allow overhang and unstable packing to simplify the problem, so some 

boxes might not have a complete foundation under them. Since Air Force 463L pallets 

are usually "cubed out" before they are "grossed out" (Taylor, 1994), we omitted all 

constraints dealing with weight and center of gravity. 

We do not employ an existing heuristic technique such as genetic algorithms, tabu 

search, or simulated annealing. A genetic algorithm is not sufficient because it does not 

appear practical to consider all of the stated constraints while performing a multiple 

crossover and expect termination in a reasonable time. Representing a solution in a 
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genotype form with hundreds of boxes turns out to be a very long gene, which 

excessively increases the storage space and the computational time. Tabu search is not 

applicable because one cannot define the move that we need to apply to our problem. 

Since the boxes have various dimensions, it is impractical to define the move as a 

swapping of locations of two boxes. Simulated annealing is a stochastic heuristic 

technique which has been employed by Faina (Faina, 2000) and it is not, in our opinion, 

intelligent enough for this problem type. When we try to pack a large number of boxes, 

we have a very large solution space and this renders stochastic techniques very 

inefficient. 

We create our own problem-specific heuristic technique using a composition of 

the tools that other heuristic methods use. We develop an adaptive heuristic algorithm 

modeling human intelligence. We employ an algorithm that combines an adaptation of 

the human intelligence with extensive data analysis applied to the candidate boxes by 

taking the advantages of some smart programming tools and data structures. We write 

the three-dimensional pallet-packing algorithm in the C programming language. We test 

it with several different sets of boxes, and apply a validation and verification process. 

1.5 Overview 

Chapter Two presents a detailed review of past work and some solution 

techniques developed to solve three-dimensional packing problems. Additionally it 

presents information about the most promising commercial three-dimensional pallet 

packing software packages. 
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Chapter Three describes in detail the heuristic algorithm we developed along 

with the data structure and other programming tools used. Chapter Four presents 

solutions generated by our approach for different sized and different featured problems 

while discussing and comparing the qualities of each solution with previously 

published solutions. Chapter Five provides conclusions and recommendations for 

future work. 
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Chapter 2 - Literature Review 

2.1 Introduction 

The packing problem is a problem with many different variants. The early form 

of this type of problem was the one-dimensional packing or partitioning problem, in 

which a set of n positive values Wj, e.g. weight values, must be partitioned into the 

minimum number of subsets so that the total value in each subset does not exceed a given 

bin capacity W. 

The two-dimensional bin-packing problem extends the one-dimensional bin- 

packing problem. Instead of considering only one set of positive values, we consider two 

different sets of positive values, namely two different dimensions, e.g. width and length 

of the rectangular pieces to be cut out of big industrial plastic film. As expected, this 

problem is harder to solve than the one-dimensional bin-packing problem. 

These packing problems are NP-hard problems. NP stands for 'non-deterministic 

polynomial'. NP-hard means the solution time increases exponentially as the size of the 

problem increases. The three-dimensional bin-packing problem is strongly NP-hard 

because the three-dimensional bin-packing problem is a special case of the one- 

dimensional bin-packing problem (Martello, Pisinger and Vigo, 2000). 

2.2 Previous Research 

Packing problems have been considered by a number of researchers, but past 

work was largely restricted to the one- or two-dimensional cases. It is widely agreed that, 

due to its complexity, any analytical solution to this problem is unlikely in the 
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foreseeable future. As a result, most those successful approaches to the problem have 

taken the form of heuristics. 

The volume of published work discussing three-dimensional solutions is still very 

limited due in part, one suspects, to the level of complexity involved, and there appear to 

be no clear measures of success (or failure). This might be expected in light of a survey 

of such analysis for the two-dimensional problem by Coffman and Shor (1990). This 

survey concludes that the field is still in the early stages of development—algorithms and 

probability models tend to be simplistic, and estimates of performance are far more 

common than exact measures. As the three-dimensional case is less well-studied and 

more complex, it is not surprising that the published work generally presents successful 

implementations, but it fails to provide the reader with any clear measure of scientific 

success. They do, however, provide some interesting insights into the various views on 

how successful packings are best achieved. Most of the approaches are based on a basic 

wall-building concept although, as described below, this is achieved in a variety of 

different ways. 

Among the earliest publications are those of Tinarelli and Addonizio (1978) and 

George and Robinson (1980). The former of these papers addresses the problem of 

minimizing the number of containers used for transporting a given cargo. Identical items 

are grouped together and layers are developed. These generally take a simple block form. 

George and Robinson (1980), in the first English language paper to directly address the 

container loading problem, describe in detail an algorithm developed to load a container 

with cargo consisting of a number of distinct types (sizes) of boxes. They utilize a fairly 

sophisticated 'wall building' approach in which sections of the container across the full 
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width and height are packed. Such an approach in many ways mirrors how the real-life 

packing of containers is carried out, and ensures that cargo of the same type is largely 

kept together. They describe the implementation of their algorithm for a cargo of 20-box 

types. A variety of solutions may be obtained by commencing packing with different box 

types and utilizing different orientations. When there are insufficient boxes to complete a 

wall utilizing one box type, spaces are generated above and to the right of the wall and 

these are packed utilizing a space filling procedure. At all times, the method attempts to 

retain a flat forward packing face. The procedure endeavors to keep boxes of like type 

together by defining 'open' and 'closed' box types, and it also accounts for box orientation 

constraints. Open type boxes are certain box types that are already started to be packed, 

while closed type boxes are the boxes of the types that are yet to be used. 

Bischoffand Dowsland (1982) had an approach also based on the principle of 

filling the container by building layers across its width. However, there are two main 

differences between their procedure and that of George and Robinson: first, each layer is 

constructed only from a single type of box; and second, the arrangement of boxes within 

a layer is determined through a two-dimensional packing procedure, which aims to 

maximize the area utilization of the cross-section (i.e. of the rectangle formed by the 

width and height of the container). This two-dimensional pallet-packing procedure is a 

heuristic and was originally proposed as an approach for calculating efficient layout 

patterns for boxes on a pallet. 

The filling of spaces in a layer is not considered in the procedure proposed by 

Bischoffand Dowsland (1982) and therefore the order in which the layers are formed has 

no influence on the packing efficiency achieved. The criterion used to decide the depth 
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dimension of a layer, however, is of crucial importance. Each of the three sides of a box 

is examined in turn as a potential depth dimension for a layer. With this dimension fixed, 

the maximum number of boxes, which can be accommodated in the cross-section, is then 

determined by means of the two-dimensional packing routine. In other words, if the 

container width and height are denoted by W and H, and the three box dimensions are w, 

I and h, respectively, with, say, w being currently considered as the depth of the layer, the 

figure calculated is the number of rectangles / X h which fit into the rectangle W X H. If 

this is greater than the number of boxes ofthat particular type still to be loaded, a full 

layer cannot be formed and the depth dimension concerned is consequently dropped from 

further consideration. If, on the other hand, there is more than one possible depth-wise 

orientation yielding a complete layer, a choice needs to be made between them. One 

obvious criterion for making this choice is the percentage fill of the cross-section (in 

either volume or area terms). Following another rationale, however, it might be desirable 

to attempt to maximize the number of boxes which are accommodated in complete layers. 

It could therefore be advantageous to select the orientation, which leaves the least number 

of boxes unpacked once as many identical layers as possible have been constructed. 

At some stage in this procedure, a point will be reached where either all boxes are packed 

in complete layers or -as is more likely- it is not possible to form further complete layers 

of any box type. In this case the remaining boxes are packed using the George and 

Robinson (1980) approach. 

Mention has already been made of the fact that in many cases several different 

variants of the same heuristic can be devised. George and Robinson (1980) explicitly 

point out the two alternative rules for choosing among open box types.   In a set of trial 
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runs discussed in George and Robinson's (1980) paper, the results obtained by using the 

second rule -which orders open types according to the same principle as closed types- 

were slightly better, but the authors make no general suggestions as to which criterion 

should be used for more efficient packings. Test runs with a different priority key for 

unopened box types are also referred to in their paper. Here the authors conclude, "that 

the original priority structure more often gives the best results". However, no precise 

details are given of how much better the results obtained were and, vice versa, how much 

worse they were when another ranking rule produced the best solution. 

A wall building approach is a natural simplification of the problem. It forms an 

important component of the algorithm described by Bischoffand Marriott (1990), and 

has been adopted by a number of other authors. Liu and Chen (1981) also present a wall- 

based algorithm in which they consider the different ways in which valid box orientations 

may be used to maximize the widthwise utilization of the container. Having assigned the 

wall base, a similar approach is applied to the container height. Gehring, Menschner and 

Meyer (1990) also present a heuristic for packing non-identical items within a container. 

They, like George and Robinson (1980), utilize the idea of packing sections of the 

container across the full width and height. They utilize an ordering based on decreasing 

volume, and having placed the first block in a section (layer), the layer determining box 

(LDB), they develop a packing across the container floor first and then upwards. This 

tends at first to produce something of a decreasing wedge across the width of the 

container. The authors report that good solutions are obtained, but they only present 

results for its application on two problems. They too ensure that they retain a flat front 

packing wall but differ from George and Robinson (1980) in that they prohibit boxes 
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from straddling adjacent layers. As they state, this approach does ensure that cargo 

sections can be moved around so as to provide appropriate weight redistribution, but it 

will clearly lead in some instances to reduced volume utilization. A further aspect 

associated with not allowing boxes to straddle sections is that of load stability. Packings 

where boxes do straddle between layers can produce a more cohesive load. 

Han, Knott and Egbelu (1989) show that the idea of walls need not be restricted to 

the vertical sides of the container. They describe an algorithm in which the container 

(major prism) is packed with identical boxes (minor prisms). The algorithm as described 

is designed for only a single box type that is constant in both size and shape and no 

practical constraints are considered. The approach is to produce packings of L-shaped 

modules, with the initial module considered spanning the whole of the container base, 

and one of the container walls. The arrangement within the 'L' is determined by dynamic 

programming (similar to the approach of Steudel, 1979), which maximizes the edge 

utilization. The idea of building walls along any of the six faces of the container is an 

interesting one; however, the example they use fits one less box than that obtained by 

stacking multiples of two different 'wall' arrangements on the floor of the container. The 

weakness in the approach of Han et al. (1989) is a result of maximizing the utilization of 

the perimeter of the 'L' module. No evidence is presented to suggest why an L-shaped 

module approach should be adopted. (Their example consists of packing a container of 

size 48" by 42" and 40" with boxes 11" by 6" by 6". They are able to fit 195 boxes, a 

95.16% volume utilization of the container. They quote the US General Services 

Administration whose published results (1966) for the same problem only provide 82.5% 

utilization). 
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Bischoffand Marriott (1990) did a case study on the development of composite 

heuristics, without proposing any solution procedures. The case study has reported and 

discussed the results of an analysis of 14 heuristic procedures for producing efficient 

container loading patterns, based on a two-dimensional packing technique. It has been 

shown that the performance of such heuristics may be very domain-dependent and, more 

particularly, may vary crucially with the number of different items in a load. The 

approach described was demonstrated to be superior, but only for certain types of 

problems. 

The Bischoffand Marriott study used an idealized problem formulation in which 

cargo weight, materials handling aspects and other such factors were not considered and 

the objective was defined as minimizing the container length needed to accommodate a 

given cargo. The situation handled in the paper is different from merely determining a 

feasible arrangement for stowing all of a given cargo. The results of the study suggest 

that the most efficient order is likely to depend on the number of different box types in 

the" cargo under consideration. 

The heuristic method suggested by Haessler and Talbot (1990) is based primarily 

on the assignment of boxes to stacks, these then being placed across the container. 

Although this is done in part in order to simplify the problem, an approach based upon 

sectioning the packing face into two or more components, 'sub-walls', which fall between 

the ideas of stack and 'full-walls', may be worth pursuing. Haessler and Talbot's heuristic 

also utilizes the fact that they allow the adjustment of order quantities so as to make best 

use of the space available. 

2-7 



Mohanty, Mathur and Ivancic (1994) proposed a multi-dimensional knapsack 

problem approach to the three-dimensional packing problem dealing with rilling up 

various containers with boxes. Their objective was to maximize utilization of the space 

in the containers or the value of the contents of the containers. They present a column 

generating procedure which heuristically uses a 'greedy approach' to generate columns 

one at a time, without considering any constraints other than overlapping and dimensions 

of the containers. Since they use a 'greedy approach', their approach is not robust and is 

strongly affected by the number of different items to be packed. 

Chen, Lee, and Shen (1995) presented a zero-one mixed integer linear 

programming model for the general three-dimensional container-loading problem. The 

problem involves packing a set of non-uniform cartons into unequal-sized containers. 

The model considers the issues of carton orientations, multiple carton sizes, multiple 

container sizes, avoidance of carton overlapping, and space utilization. Several special 

container loading problems such as selecting one container from several alternatives, 

weight balance, and variable container length were addressed. The modifications to the 

general model needed for these situations were also provided. Very small-scale example 

problems (with only 6 cartons) were illustrated to validate the models. For further 

development, additional constraints can be introduced to the models to include other 

concerns in the container-loading problem such as the stability of the packing pattern, 

stackability, the integrity of each carton type, and weight restriction. Unfortunately, this 

work presented only an analytical model. Using this model, it is impossible to solve a 

real world problem, since the number of variables and the number of constraints increase 

quadratically as the number of cartons increases (it grows as 2n2, where n is the number 
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of cartons). Also, in the conclusion section, the author says that a more efficient solution 

procedure is needed to solve large-scale container loading problems. 

Bischoff, Janetz and Ratcliff (1995) developed a model producing a high degree 

of stability. The basic concept underlying their algorithm is simple: The loading pattern 

is constructed from the bottom upwards using single layers of up to two different box 

types at a time. The choice of box type(s) and orientation(s) is governed by the resulting 

utilization of the loading surface onto which a layer is to be placed. They developed and 

tested three algorithms with slight modifications: the first one packs up to two different 

box types per layer, the second one packs up to two different box types but of the same 

height, and the third one allows packing only one box type per layer. They solved 1400 

different problems and compared three algorithms' solution efficiencies. Their most 

efficient model was the first one, but as the number of different box types increases, the 

solution quality declines. 

Terno, Scheithauer, Sommerweiß and Riehme (1997) employed a different 

heuristic algorithm. In addition to the dimension and overlapping constraint, they take 

total weight limit of the pallet and the stability constraints into account. They basically 

employed a layering approach while packing each layer by using a branch and bound 

solution method. They solved 700 problem sets among the problems that Bischoff et al. 

(1995) solved and made comparisons with past work. Their solutions were better than 

Bischoff et al. 's solutions, but since their model was mainly designed for the 

"Manufacturer's Pallet Packing Problem", as the number of different items increases, the 

volume utilization declines. 
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Martello, Pisinger and Vigo (2000) present a branch-and-bound method to solve 

the three-dimensional packing problem. They tried to orthogonally pack all the items 

into the minimum number of bins. A computational test is presented showing that 

problems with the number of boxes less than 30 and 50 were solved. When the average 

number of items per bin gets bigger, the problem becomes harder to solve. Another 

weakness was that they assumed that the items may not be rotated. They considered only 

basic type of constraints (overlapping and bin dimension limits). 

Faina (2000) developed a geometrical model that reduces the general three- 

dimensional packing problem to a finite enumeration scheme. Cartons were loaded only 

on volume restrictions; no other restrictions were considered, and the boxes can assume 

any of the six possible orthogonal orientations. He pointed out that adding more 

constraints could possibly result in the algorithm giving worse results. He also says that 

the use of an approximation algorithm, which derives from a truncation of a global 

optimization algorithm, is, from all points of view, better than a mere heuristic procedure, 

but he does not substantiate this statement. He developed a simulated annealing 

algorithm called zone3d. The results of many statistical tests were given with different 

numbers of boxes. He had many approximations in his algorithm and due to these 

approximations, he explained that the algorithm is not guaranteed to find a global 

minimum of the wasted container volume. 

Faina (2000) starts his algorithm with the first box placed at the origin. By 

induction, it is supposed that the 1th box has been located; now the method of zones 

locates at most 2n+l points where the (i+1)01 box could be located, and this point is 

chosen at random; and so on. In this way the initial configuration is obtained. Then the 
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algorithm performs a small perturbation to this initial configuration by altering slightly 

the order of the boxes, for instance by changing the positions of any two boxes at 

random, and by constructing a new configuration. 

With up to 32 boxes, Faina could choose cooling schedules which support at best 

the quality of the final placings; but with over 64 boxes, the effort to improve the final 

placing is too unfavorable from a computational point of view. Therefore, the results 

obtained get worse as the number of boxes increases. 

Ballew (2000) developed a mathematical formulation similar to the analytical 

method of Chen, Lee, and Shen (1995), by using nonlinear integer programming on a 

simplified version of this problem. He presented a general mathematical formulation. 

Unfortunately, when implemented, the solver package Hyperlingo found a local optimum 

to a very simplified and small problem of just three boxes without considering several 

important constraints. The formulation of a bigger problem with more boxes was 

unrealistic because the number of variables and constraints increase incredibly fast as the 

number of boxes increase. 

Alternatively, Ballew employed a simple genetic algorithm with single crossover 

to solve a small sample (only 11 boxes) problem using the genetic algorithm software 

library Genesis. The length of the genotype for such a small problem was 1,232 bits. 

Unfortunately, Genesis did not show any signs of convergence in a reasonably amount of 

time. Ballew concluded that one reason for this might be that Genesis only allows for 

single-point crossover, which is too simplistic for this problem. After 1,000 generations, 

which took about 45 minutes, the best solution did not come close to a feasible packing 

of 11 boxes (Ballew, 2000). 
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Ballew speculated that one potential method for determining the number of 

crossover points is to base it on the number of boxes. We doubt this approach would 

succeed because, increasing the number of crossover points does not necessarily mean 

that a genetic algorithm will provide better solutions. There is always a strong possibility 

of achieving a deteriorated solution set if we increase the number of crossover points. 

In Chapter One, we pointed out the importance of the efficient packing of a pallet 

especially for the Air Force. For those reasons, along with the research done at the Air 

Force Institute of Technology (AFIT), the Air Force has contracted research on problem 

tthrough Computer Science Corporation (1997) and TASC, Inc. (1998). 

In its research, the Computer Science Corporation concluded that an analytical 

model giving a global optimum might not be possible, but with heuristic techniques, it is 

possible to develop an algorithm giving near optimum solutions in a reasonable time. 

Therefore, they stated that a software package using such a heuristic algorithm could be 

developed (Computer Science Corporation, 1997). 

At the end of TASC's research, they developed a software package in C++ 

language considering some of the required constraints of the problem to test the 

performance of the algorithm they developed. After performing some tests, they 

concluded that they could develop a software package including other required 

constraints, providing better solutions than those software packages found on the market. 

They suggested it would require about six months to develop and the cost of such a 

product would be $ 150,000 (TASC, Inc., 1998). 
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2.3 Existing Commercial Software Packages 

There are a few companies that have developed packing software packages. We 

found two companies with commercial products. 

One of the companies is CAPE Systems, Inc. (2000) offers two different types of 

products. One is called Truckful. The program provides help on planning, creating, 

editing, viewing, printing and maintaining Multi-Product load plans for trucks, container 

loads and railcars. On their website, it said that the package uses the latest optimization 

techniques and can quickly build truck and container loads based on realistic loading 

rules and restrictions, but there is no other specific information. We sent an e-mail 

asking about the technique they have used to develop the package, but they replied that 

all available information is on their web site. Also Truckful recalculates load counts, 

load weight, load dimensions and the center of gravity of the total load after any changes 

are made to the Load Plan. 

Cape Systems, Inc. (2000) other product is Cape Pack'99, which is a packaging 

design and pallet loading software. There are basically three main groups in the software 

package: Design Group, Arrange Group and Pallet Group. The design group resizes an 

existing primary pack or designs a completely new product. Starting with a proposed 

size and specifying the scope for dimensional and/or volumetric changes, the program 

can establish what it calls the best possible primary pack size. The arrange group creates 

new case sizes for existing primary pack sizes. These first two program groups are not 

appropriate for our problem. 

The third program group in Cape Pack '99 is the one that is related to our 

problem; the Pallet Group. It generates a range of numerical and graphical solutions for 
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loading objects onto pallets and into trucks. Pallet layers and cases can be added or 

deleted and pattern layouts can be rearranged with the drag and drop Layer Editor. This 

group also includes Display Pallet for loading different size products onto the same 

pallet. Using basic information about the size and weight of the outer packaging, the type 

of pallet and the maximum height and weight of the pallet load, these programs generate 

numerical and graphical solutions for loading packages onto pallets and into trucks. In 

this program group, one can calculate up to three different pallets simultaneously and 

work with cases, trays, bags, cylinders, ovals and trapezoidal shapes. This module allows 

the user to load products of up to 40 different sizes. Unfortunately, there is a restriction 

on the dimensions of the container: each dimension must be less than 100 inches, which 

is less than the length of the 463 L pallet of 108 inches. Depending on the number of 

different sized boxes to be packed, the solution time is around 1 minute. Although we do 

not know what kind of optimization technique it uses, the program uses some algorithms 

for packing loads in layers or columns. 

Another commercial packing software is Cube-IQ, which is the product of Magic 

Logic Optimization, Inc (2000). This software package is a product of Remarkable 

Software Company, and from its specifications, it appears it might be of use to the Air 

Force. 

Cube-IQ is very flexible, and allows the containers (trucks, pallets, crates) to be 

either rectangular, or have a non-flat roof or floor, such as sliced-off corners of airline 

containers. An overall weight limit is taken into account and the system automatically 

handles axle weight limits. There is also an option for the correct positioning of the 

center of gravity. Cube-IQ optimizes over multiple containers, optionally in multiple 
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sizes. It also allows the items to be rectangular, cylinder and 'sofa' (3D L-shapes). Other 

box data include switches for 'turnable', 'allowed on its side', 'allowed on its end', 'bottom- 

only', and 'top-only' (possibly in maximum number of layers). Box weight is taken into 

account. Cube-IQ supports loading and stacking rules for each orientation of the package 

separately. This allows the user to set up more complex loading rules, such as 'flat only if 

on top' (for large, but flat boxes), and 'straight up unless on top' (for boxes that can only 

support other boxes if they are loaded upright). 

It produces an output of the volume and weight capacity utilization for all loaded 

containers, and for each loaded package the container number and, within that container, 

the 3-D loading coordinates. Cube-IQ has a graphics window in which the user can see 

the container as it is loaded. The picture can be rotated, and it will build up one block of 

boxes at a time. It gives a print out of complete manifests and loading instructions, 

showing for each block of similar boxes exactly where it is to be loaded, including 

pictures. Its runtime is fairly short: From one second on a Pentium III-500 PC for a case 

with 25 loaded parcels, to one minute to load hundreds of boxes. 

It seems like it is a good optimization package but there is little insight into the 

techniques Cube-IQ uses to pack items. Since it finds a good solution, not the optimal 

solution, it likely uses a heuristic algorithm. It is also not clear whether or not Cube-IQ 

ensures heavier boxes are packed towards the bottom. 
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Chapter 3 - Methodology 

3.1 Introduction 

We have developed a robust pallet-packing model that solves challenging 

problems in short times while finding near optimal to optimum solutions. In this chapter 

we present our model in detail; the input and output data, the data structure, and the 

heuristic method that we developed are discussed. 

Ravindran et al. (1986) present the principles of modeling. The first four 

principles they present are key to successful model building: 

1. Do not build a complicated model when a simple one will suffice, 

2. Beware of modeling the problem to fit the technique, 

3. The deduction phase of modeling must be conducted rigorously, and 

4. Models should be validated prior to implementation. 

We followed these principles while building our model. We started simple but 

challenging enough to solve big problems in a reasonable amount of time while relaxing 

some constraints as we pointed out in Section 1.4. 

As the second principle advises, we did not try to force fit an existing solution 

technique onto our problem. We examined past related work in depth to determine the 

efficiencies of existing solution techniques. 

3.2 Overview 

Based on this start, we developed a special heuristic for our problem and 

implemented it in the C programming language. We performed debugging, verification, 
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and validation to produce a software package that packs a number of given boxes into a 

given container considering only the restrictions presented in Section 1.4. Our model 

packs as many boxes as possible in a given container while selecting the suitable boxes 

from a given box set. This property makes our approach more realistic. The model is 

also able to pack rectangular boxes in any orientation. Actually, our model not only 

packs rectangular boxes in any orientation, it also packs according to different 

orientations of the pallet. In other words, it builds walls or layers along any of the six 

faces of the given container if all three pallet dimensions are not the same. 

The model basicly builds a new packing during each iteration. Our approach does 

not limit the number of different boxes in each layer. It may pack any number of 

different boxes within a layer if their surfaces make a good match to reduce the unpacked 

gaps within the layer. This property makes it robust. 

Our heuristic employs both layer packing and wall building approaches. There 

are some other important methods that our program uses to pack boxes efficiently and 

quickly. One of them is packing a sublayer into any of the available unused space in the 

last packed layer, which we call a layer-in-layer packing approach. Another new, and the 

most important, feature of our heuristic is an adaptation of human behavior and 

intelligence to decide which box to pack. Considerable improvement also comes from 

the data structure we employ. For verification, validation and debugging purposes, we 

also have written a program to visualize the best solution found. Since the output of our 

program contains x, y, z coordinates and x, y, z dimensions of the packed orientation of 

each packed box, it is difficult to manually check a solution to see if there is any 
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constraint violation or numerical error. To make that process easier and to increase the 

presentability of solutions, we display the best solution in a box-by-box format. 

3.2.1  Human Intelligence 

Tabu search developed by Glover (1986) was motivated by Glover's observation 

of how people approach problem solving. Faced with the tough pallet-packing problem, 

we sought, and found similar motivation. We call our approach an adaptation of human 

intelligence because we pack boxes onto the pallet just like a human, from bottom to top 

or by building walls. This actually ensures a level top of the load for the cargo net. 

Humans prefer to pack boxes to reduce packing surface irregularities. We eyeball the 

dimensions of any gap to be packed and pick the most suitable boxes to keep the 

topology as smooth as possible. Our heuristic does the same thing. While packing a 

layer, it attempts to retain a flat forward packing face. In each step, the dimensiones of 

the gaps to be filled are determined, all the eligible boxes and their orientations are 

analyzed, and the best fitting box is selected and packed. Before starting to pack any 

layer, it analyzes all unpacked boxes to pick the most suitable layer thickness to reduce 

wasted volume. However, the selected layer thickness is flexible and might be increased 

to accomodate the height of the selected box. Finally, a human will also fill uneven 

layers, if possible. This led us to our layer-in-layer approach. 

Our layer building technique is so effective that after a few iterations, the model 

can be stopped with the solution quality only about 1-8% less than the volume utilization 

of the best solution. This feature is effective especially when we deal with a large 

number of boxes and computing time is scarce. 
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3.2.2 Attributive Memory 

An important tool we use is attributive memory. We use attribute-based memory 

to avoid using a huge amount of memory to save evey solution produced during the 

solution process. Our model keeps only three parameters of the solution found during 

iterations. These attributes are the pallet orientation of the solution, another one is the 

starting layer thickness value, and the last one is the volume utilization of the solution. 

The attributes of the best solution are then used to reconstruct that best solution. 

3.3 Input Data 

All box dimensions and the pallet dimensions are read from a text file specified 

by the user, (.txt ectension assumed). This file must be in the same hard drive folder 

where the program is executing. The user must follow the necessary format of the input 

file. 

Figure 3-1 provides an example of an input file: 

E:    -=101*1 
File   Edit   Format 

104,   96,   84& 
1. 70,   104,   24,   4 
2. 14,   104,   48,   2 MS 
3. 40,   52,   36,   3 jrj 

Figure 3-1: Input File Format 

In the first line, the three numbers are the x, y, and z dimensions of the pallet. 

The order of the dimensions is important because at the end, we convert the output data 

format of the best solution to the orientation of the pallet entered in the input file. 
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All subsequent lines contain box information. In each line, the first number is the 

box label and has no affect on the solution since the program does not take these labels 

into consideration. Box labels merely provide an organized way to input the data file. 

The second, third, and fourth numbers are the x, y, and z dimensions of each box type, 

respectively. Since the program tries all possible orientations of each box, the order of 

the box dimensions actually has no importance. The fifth number represents the number 

of boxes of the same type. Although commas between the numbers are not required, at 

least one space character must delimit the numbers. No error handling is included in the 

current program so the input criteria should be followed. 

3.4 Data Structure 

Data structure is a critical component of any program. Choosing the proper data 

structure affects both performance and solution time. For our program, it is important to 

reach data quickly We use two different arrays and a double linked list to accomplish 

this. 

The first array is the Boxlist[] array, which keeps all box dimensions, coordinates 

of packed boxes in the container, and other necessary data. There is a total of twelve 

fields in each record of this array: 

Element Name Description 

1. Packst : Status of packing (0: Not packed; 1: Packed), 

2. N : The number of boxes that have the same dimensions, 

3. Diml : The length of one of the three dimensions, 

4. Dim2 : The length of another of the three dimensions, 
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Element Name 

5. Dim3 

6. Cox 

7. Coy 

8. Coz 

9. Packx 

10. Packy 

11. Packz 

12. Vol 

Description 

: The length of the other of the three dimensions, 

: X-coordinate of the location of the packed box, 

: Y-coordinate of the location of the packed box, 

: Z-coordinate of the location of the packed box, 

: X-dimension of the orientation of the box as it has been packed, 

: Y-dimension of the orientation of the box as it has been packed, 

: Z-dimension of the orientation of the box as it has been packed, 

: Volume of the box (Diml*Dim2*Dim3) 

We also store the volume of each box so the model does not have to calculate it 

each time it needs the box volume. Fields 6-11 are meaningless if Packst value is zero, 

but they provide the packing information once the box is packed and Packst is set to one. 

Each box has a record in the Boxlist[] array. 

The other array is the Layers [] array. This array stores all the different lengths of 

all box dimensions. Each Layerdim value in this array represents a different layer 

thickness value with which each iteration can start packing. Before starting iterations, all 

different lengths of all box dimensions along with evaluation values are stored in this 

array. The evaluation values (Layereval values) are calculated by the Listcanditlayers 

function as explained in Section 3.6.1. There are two different data fields for each record 

in this array: 

Element Name Description 

1. Layerdim        : A dimension value, 

2. Layereval       : Evaluation weight value for the corresponding layerdim value. 
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1. *pre 

2. Cumx 

3. Cumz 

4. *pos 

The double linked list we use keeps the topology of the edge of the current layer 

under construction. We keep the x and z coordinates of each gap's right corner. The 

program looks at those gaps and tries to fill them with boxes one at a time while trying to 

keep the edge of the layer even. Each entry in the double linked list has these data fields: 

Element Name Description 

: Pointer that keeps the address of the previous entry, 

: Keeps the x-coordinate of the gap's right corner, 

: Keeps the z-coordinate of the gap's right corner, 

: Pointer that keeps the address of the following entry. 

During execution of each iteration, this double link list may have only one entry, 

or may have hundreds of entries based on the box sizes of the box set being packed. 

Most of the time, new entries are inserted while useless entries are removed. Therefore, a 

double linked list is used to handle these needs dynamically and efficiently. 

3.5 Numerical Limits 

These model limitations were decided considering both memory limitations for an 

average computer memory capacity and the nature of the realistic packing problems: 

Maximum number of boxes in a box set : 5000 

Number of total different dimension values : 1000 

Max dimension length for either pallet or any box    : 32,767 

All dimension values must be integer numbers. 

3.6 Flow Chart of The Algorithm 
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Figure 3-2 depicts the flow chart of how the iterations are performed. The 

pseudo-codes of the functions are provided in Appendix A. The program itself is in 

Appendix B. 

START 

INITIALIZATION 
Get the input 
file name 

the input file 

INPUTBOXLIST gr" !Ta 
Read data from       ^—I   Input File      I 
the innnt file ^ ~^ 

Initialize 
Variables 

EXECITERATIONS 
Get one (different) 

orientation of the pallet 

LISTCANDIDATELAYERS 
Create Layersf] Array 

QSORT 
^Sort Laversfl 

Read one value from the 
Layersf] array and set it as 
the starting layer thickness 

I 
PACKLAYERdaverthickness) 

FINDLAYERfremainpvl 
Find the most suitable 

layer thickness value by 
examining the unpacked 

boxes 

PACKLAYERCspace^ 

YES 

If the volume utilization is better 
than the best so far, keep 
the pallet orientation and 
the starting layerthickness value. 



I 
If 'Q' is 

YES I tvned.exit 

Figure 3-2: Flow Chart of the Algorithm 

REPORT 

Get the pallet orientation in 
which the best solution found. 

Get the value from the 
Layers[] array and set it as 
the starting layer thickness 
of the best solution 

PACKLAYERClaverthickness') 

While finding the best solution, 
write all necessary info to the 

console and the report file. 

FINDLAYERfremainpv) 
Find the most suitable 

layer thickness value by 
examining the unpacked 

boxes 

Wait for a key hit 
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END 

Figure 3-2: Flow Chart of The Algorithm 

3.7 How Does The Heuristic Work? 

3.7.1   Preparation For Iterations 

Assume Figure 3-1 presents the problem to solve. Figure 3-3 is the corresponding 

BOXLIST[] array. 

Variable assignments: XX=104; YY= =96;. ZZ=84 > 

Boxlist[X]=(Packst, N,] Diml Dim2, Dim3, Cox, Coy, Coz, Packx, Packy, Packz, Vol) 

Boxlist[l]=( 0, 4, 70, 104, 24, 0, 0, o, o, o, o, 174720) 

Boxlist[2]=( 0, 4, 70, 104, 24, 0, 0, o, o, o, o, 174720) 

Boxlist[3]=( 0, 4, 70, 104, 24, 0, 0, o, o, o, o, 174720) 

Boxlist[4]=( 0, 4, 70, 104, 24, 0, 0, o, o, o, o, 174720) 

Boxlist[5]=( 0, 2, 14, 104, 48, 0, 0, o, o, o, o, 69888) 

Boxlist[6]=( 0, 2, 14, 104, 48, o, 0, o, o, o, o, 69888) 

Boxlist[7]=( 0, 3, 40, 52, 36, o, 0, o, o, o, o, 74880) 

Boxlist[8]=( 0, 3, 40, 52, 36, o, 0, o, o, o, o, 74880) 

Boxlist[9]=( 0, 3, 40, 52, 36, o, 0, o, o, o, o, 74880) 

Figure 3-3: Creating the Boxlist[] Array 
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After the input process is complete, the model creates a layer thickness array 

named LAYERS []. This array contains every unique dimension of the boxes less than 

the y dimension of the current orientation of the pallet with their individual evaluation 

values. The Layers[] array is created for each orientation of the pallet. Each entry is a 

possible layer thickness value for iterations with the current orientation of the pallet to 

start the packing. 

The evaluation value of a layerdim represents how close all other boxes are to this 

layer height if we selected this value as a layer thickness for the packing. The model 

calculates these evaluation values as follows: 

Retrieve a box and one of its dimensions. Examine the previously set layerdim 

values in the array. If this is a different length and less than the y dimension of the 

current orientation of the pallet, store the length in a new element in the layerdim array. 

Then it goes through every other box retrieving its dimension closest to the layerdim 

value, and adds up the absolute value of the differences between that dimension and the 

layerdim value. The layerdim value with the smallest layereval weight value is the most 

suitable layer thickness value; this value should yield the smoothest layer height. 

Continuing our example, calculations for the Layers[] array for the pallet 

orientation X=104, Y=96, Z=84 are: 

Layers[X]=(Layerdim, Layereval) 

Abs(70-70)+Abs(70-70)+Abs(70-70)+Abs(70-48)+Abs(70-48)+Abs(70-52)+Abs(70-52)+Abs(70-52)=98 

Layers[l]=(70,98) 

Abs(24-24)+Abs(24-24)+Abs(24-24)+Abs(24-14)+Abs(24-14)+Abs(24-36)+Abs(24-36)+Abs(24-36)=56 

Layers[2]=(24, 56) 

Abs(14-24)+Abs(14-24)+Abs(14-24)+Abs(14-24)+Abs(14-14)+Abs(14-40)+Abs(14-40)+Abs(14-40)=106 
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Layers[3]=(14,106) 

Abs(48-70)+Abs(48-70)+Abs(48-70)+Abs(48-70)+Abs(48-48)+Abs(48-40)+Abs(48-40)+Abs(48-40)=100 

Layers[4]=(48,100) 

Abs(40-24)+Abs(40-24)+Abs(40-24)+Abs(40-24)+Abs(40-48)+Abs(40-48)+Abs(40-40)+Abs(40-40)=80 

Layers[5]=(40, 80) 

Abs(52-70)+Abs(52-70)+Abs(52-70)+Abs(52-70)+Abs(52-48)+Abs(52-48)+Abs(52-52)+Abs(52-52)=80 

Layers[6]=(52, 80) 

Abs(36-24)+Abs(36-24)+Abs(36-24)+Abs(36-24)+Abs(36-48)+Abs(36-48)+Abs(36-36)+Abs(36-36)=72 

Layers[7]=(36, 72) 

There are 8 different dimension values but since the dimension value 104 is larger 

than the y dimension of the current pallet orientation 96, we do not evaluate it as a 

possible layer thickness. After having such a Layers[] array prepared, it is sorted 

ascending order with respect to its layereval values: 

Layers[X]=(Layerdim, Layereval):   Layers[l]=( 24, 56 ) 

Layers[2]=( 36, 72) 

Layers[3]=( 52, 80) 

Layers[4]=( 40, 80) 

Layers[5]=( 70, 98) 

Layers[6]=( 48, 100) 

Layers[7]=( 14, 106) 

Figure 3-4: Creating the Layers[] Array 
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Since the smallest layereval value potentially may be the most suitable layer 

thickness value, having that list sorted and starting to pack from the most promising layer 

thickness values would be an important factor to reduce the solution time, especially if 

we consider packing a large number of different box types. However, this greedy 

approach does not always hold. Sometimes an iteration starting with a larger layerdim 

value yields the best solution. 

3.7.2   Execution Of Anlteration 

Iterations tie closely to the six possible orientations of a pallet. During iterations, 

all six orientations of the pallet are packed. Each unique orientation of the pallet is 

treated as a pallet to pack. Obviously, if a pallet has three identical dimensions, it has 

only one orientation. In general, we have 1,2 or 6 orientations for 1,2 or 3 unique 

dimensions, respectively. In each iteration, each orientation of the pallet is packed once 

for each element in the Layers[] array. Each iteration begins packing with an initial layer 

thickness taken from layerdim value in the Layers[] array. Thus, if we have 7 different 

dimension values in our Layers[] array and the pallet has 3 unique dimensions, the 

program potentially performs 6*7=42 iterations. Thus, the solution time of our program 

is effected by both the number of different dimension values and the number of total 

boxes to be packed. The number of different box types does not have a direct affect on 

the solution time. It is always possible to terminate the program prematurely by pressing 

the 'Q' key whenever a sufficient 'best so far' value has appeared on the console. Since 

the layer packing approach of the program is really effective, to get a very high volume 

utilization in a very short time is strongly possible. 
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Before explaining the details of the heuristic, we need to mention its 

computational complexity. If we have n boxes in our box set and d different dimension 

values for all boxes, the worst solution time is given by: 

0(t)=6ndP(t) (1) 

where P(t) is the time spent to find and pack any box, which can be defined: 

P(t)=6nE(t) (2) 

where E(t) is time to examine an orientation of a box. E(t) depends upon the computer. 

We ran all the test problems on a Pentium III 750 MHz computer, and for that computer, 

E(t)= 0.18 microseconds (10~6). 

Therefore the worst-case solution time performance is: 

fl(t)=36 n2 d E(t) (3) 

Each iteration starts with the pallet empty, all boxes available, a pallet orientation 

and a layer thickness from the Layers[] array. Subsequent iterations change the starting 

layer thickness or the pallet orientation. The parameters of the best packing found, based 

on volume packed, are saved as the current packing solution. 

We perform layer packing or wall building thus reducing the problem to a 

systematic series of two-dimensional packing problems. As Figure 3-5 depicts, we pack 

along the x- and z-axis. To track the current topology, each right corner coordinate data 

is maintained in a doubly linked list. As boxes are packed, this coordinate data will 

change. The doubly linked list facilitates the change to the coordinate data. This 

approach means we only need to track the current edge being packed, and we avoid 

overlaps of layers and pallet edges. 
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Each packing action begins by finding the smallest z-value in the coordinate data 

list and from that list finding the current gap in the layer to fill. The candidate boxes are 

examined to find one that fills the gap, with the correct layer thickness, and to find a box 

that fills the gap yet exceeds the current layer thickness by as small an amount as 

possible. If no box is found to fill the gap, the gap is ignored. Each box is examined in 

each orientation. 
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104, 21,       NULL 
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Figure 3-5: Packing a layer 

Table 3-1: Key Packing Program Functions 

FUNCTION PURPOSE 

Packlayer 

Findsmallestz 

Findbox 

Analyzebox 

Update the linked list and the Boxlist[] array as a box is packed. 

Determine the gap with the smallest z value in the current layer. 

Find the box that best fits to the current gap. 

Used by Findbox to analyze box dimensions. 
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Checkfound Determine which box to pack. 

Execiterations Execute iterations by calling proper functions. 

Report Duplicate best-so-far packing. 

Outputboxlist Writes packing information to file. 

Graphunpackedout Writes packing order for visualization program. 

The Findbox function analyzes the unpacked boxes using the Analyzebox 

function. For each different orientation of the unpacked boxes, the Analyzebox 

parameters are: 

Hmx : Maximum available x-dimension of the current gap to be filled. 
Hy : Current layer thickness value. 
Hmy : Maximum available y-dimension of the current gap to be filled. 
Hz : Z-dimension of the current gap to be filled. 
Hmz : Maximum available z-dimension to the current gap to be filled. 
Diml : X-dimension of the orientation of the box being examined. 
Dim2 : Y-dimension of the orientation of the box being examined. 
Dim3 : Z-dimension of the orientation of the box being examined. 
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Figure 3-6: Findbox Function Parameters 
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Analyzebox seeks, in precedence order, a box with a y-dimension closest to Hy 

but not more than Hmy, with an x-dimension closest to, but not more than Hmx, and a z- 

dimension closest to Hz, but not more than Hmz. This means it considers the y- 

dimension, then among boxes having the same y-dimension, it looks at the x-dimension, 

and finally among the boxes having the same y- and x-dimension, it looks at the z- 

dimension. It calculates the differences between the gap's dimensions and the box 

dimensions for each box and picks the box with the least differences to be the best fitting 

one. It also finds a second box with a y-dimension bigger than the current layer 

thickness, but closest to the current layer thickness. Boxes that fit and are the proper 

thickness (y-values) are packed. Uneven boxes require extra consideration. 

We developed a layer-in-layer packing to accommodate packing of uneven 

heights. A layerinlayer variable determines if there is any unevenness in the current 

packing layer. 

If there is no box to fit the current gap, the gap under consideration is left 

unpacked. Figure 3-7 depicts this situation. 
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Figure 3-7: Leaving a Gap Unpacked 
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If it is required; the current layer thickness is increased to the y-dimension of the 

taller box found by the Findbox function. When the current layer thickness is increased, 

the total increment of the layer, from the beginning to the end of the current layer 

packing, is saved in the layerinlayer variable. After finishing the packing of the current 

layer, if the layerinlayer variable is greater than zero, another packing within the layer, 

for that layerinlayer thickness value, is performed. 

Y 

X 

Figure 3-8: Layer in Layer Packing 

Layer-in-layer packing means our approach can utilize more space in the pallet. 

Although not used often in the problem set we examined, when used, layer-in-layer 

packing gave much better results. 

While the Layers[] array entries are used to start the first layer of each iteration, 

subsequent layers require calculation to determine good layer thickness values. These 
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calculations duplicate these described for the Layers[] array entries, but apply only to the 

as yet unpacked boxes. The best layer value is used as the layer thickness for subsequent 

packing layers. Layering continues until the pallet can no longer accommodate further 

layers. The pallet is then considered packed. 

Each packing tracks the volume of boxes packed and volume of boxes not packed 

to derive a pallet utilization measure and percentage of packed box volume. Each 

packing also has an associated pallet orientation and Layers[] array index. The best 

packing found becomes the final solution of the model. 

After getting the best solution's parameters, the function Report is called. The 

Report function re-performs the packing with the parameters of the best solution found, 

but now calls the Outputboxlist function to generate the report file and the 

Graphunpackedout function to generate the visualization program input file. Information 

about unpacked boxes is included at the end of the report file. 

3.8 Output Data 

The model has three output streams. One is to the console, another to the report 

file, and the final to "visudat" file. Both the console and the report file report the overall 

numerical summary of the solution as well as the packing coordinates and the orientation 

of each packed box. The list of any unpacked boxes, is appended to the end of the report 

file. The dimensions of the pallet along with the packing coordinates and the orientation 

of each packed box are output to the file "visudat". The graphical interface program uses 

the "visudat" file to visualize the solution. 
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The name of the report file uses the same root name of the input file but with the 

extension "out". Figure 3-9 presents a "visudat" file format, and Figure 3-10 presents a 

report file format. 

I Jm visudat - Notepad ifci '•: -|n|x| 
File   Edit Format Help 

84 104 96 j*. 

0 0 0 70 104 24 r- 
1        70 0 0 14 104 48 jt'jl 
1          0 0 24 70 104 24 l|! 

0 0 48 70 104 24 if 
70 0 48 14 104 48« 

0 0 72 70 104 24 zl 

Figure 3-9: Visudat File Format 
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Figure 3-10: Output File Format 

3.9 Graphical Interface Program 

The graphical interface program, which is available in Appendix C, aids 

verification, checks for possible errors, and promotes the presentability of the best 

solution found. It reads the pallet dimensions and the box packing information from the 

"visudat" file and displays them on the screen interactively starting from the far end 

towards the user. This ensures a clear view of the box as it is packed. The program 

scales all dimension values and corresponding coordinates to properly fit the screen. 

3.10 Summary 

We developed a very efficient and robust heuristic technique to solve the three- 

dimensional pallet-packing problem. We implemented it in a program and our testing 

shows good results. In Chapter Four, we present the test problem solutions and some 

comparisons with other pallet-packing approaches. 
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Chapter 4 - Results 

4.1 Introduction 

We employed several different techniques to test our model. We created special 

test problem sets and examined performance on readily available, standard problem sets. 

In this chapter, we present testing results to learn about the important characteristics of 

our model. 

4.2 Numerical Tests and Comparisons 

To test our model, we created many different box sets. Prior works tested their 

methods with randomly generated box sets. While we also used random problems, it is 

impossible to evaluate the solution qualities of these random problems because the 

optimum solution is unknown. Thus, we developed a technique to generate problem sets 

with known solutions. 

We used the Exel software to produce uniformly distributed random dimension 

values between certain numerical limits and then we arranged the box quantities to be 

close to the pallet volume. Table 4-1 summarizes a sample of those randomly generated 

problem solutions. 

Table 4-1: Randomly generated problem solutions 

Box Set # of Boxes # of Box Types % Vol. Utilization Solution Time(sec) 

Set#l 307 5 89.5 2 
Set #2 1728 5 97.5 189 
Set #3 637 11 92.4 44 
Set #4 1493 21 96.4 255 
Worst Case(#5) 31 31 68.7 <1 
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For all randomly generated problems, the pallet dimensions are 104, 96, 84. The 

volume utilization of the pallet is fairly high, but the optimum solutions are unknown. 

We do know our solution times are quite low. In the very last line of Table 4-1, we 

present results for a problem that is extremely difficult to solve because all boxes are 

unique. The volume utilization is very low, but seems reasonable given the unique size 

of each box. We also obtained the solution very quickly. We packed 10 different 

realizations of the difficult problem type and found the worst-case solution was greater 

than 65%. 

Since we wanted to evaluate our solutions by comparing them with optimal 

solutions, we developed a technique to generate problem sets. In our technique, we 

divide the container into many different sized boxes. These boxes can then be listed in 

any order, even rotated, to yield a packing problem with a known, optimal solution of 

100% pallet volume utilization. All problem sets that we generated are in Appendix D. 

■■l 

Figure 4-1: Creating Box Sets 

The box sets that we generated with this problem generation technique and our 

solutions are presented in Table 4-2. Overall, our method does quite well. 
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Table 4-2: Specially Generated Problem Solutions 

Box Set # of Boxes # of Box Types % Vol. Utilization Solution Time(sec) 

Set #6 6 2 100 <1 
Set #7 10 3 100 <1 
Set #8 12 4 100 <1 
Set #9 18 6 89.7 <1 
Set #10 86 7 91.6 <1 
Set #11 39 15 84.5 1 

We developed our model as a distributor's pallet packing problem but wanted to 

test it on the manufacturer's pallet packing test problems (MPPP). Since the distributor's 

pallet packing problem is much harder than the MPPP, we expected our model to yield 

very good results on the MPPP. We created these problem sets using the same problem 

generation technique and and solved the problems. Our results are presented in Table 4- 

3. As expected, the model does very well on the MPPP. 

Table 4-3: Specially Designed MPPP Solutions 

Box Set # of Boxes # of Box Types % Vol. Utilization Solution Time(sec) 
Set #12 576 1 100 4 
Set #13 1152 1 100 18 
Set #14 4992 1 100 228 
Set #15 1152 2 100 8 
Set #16 2784 2 98 315 

There are also 700 problems generated by Bischoff e* al. (1995) readily available 

on the Imperial College Management School web page (2001). These problems are 

randomly generated and come in 7 files. Each of the 100 problems in 7 files contain 3, 5, 
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8,10,12,15, and 20 box types, respectively. All problems use the same pallet 

dimensions of 587,233, and 220. We solved these 700 problems and obtained the results 

presented in Table 4-4. Solution detailes are presented in Appendix E. 

Table 4-4: Solution Summary Of The Given Problem Set 

Box 
Set 

# of box 
types (n) 

# of Boxes % of Pallet Utilization Utilization 
Std. Dev. 

Solution Time(sec) 

min ave max min ave max min ave max 

BR-3 3 69 150 476 78.9 89.0 95.3 2.93 <1 1.07 12 
BR-5 5 81 137 266 84.8 89.0 94.0 2.03 <1 1.23 5 
BR-8 8 80 134 232 84.5 88.4 92.1 1.56 <1 1.85 5 
BR-10 10 75 133 233 84.4 88.2 91.9 1.52 1 2.19 6 
BR-12 12 84 133 218 84.0 87.6 89.9 1.33 1 2.73 8 
BR-15 15 85 131 203 84.3 87.4 91.3 1.28 1 3.39 9 
BR-20 20 90 130 172 84.3 87.1 90.2 1.15 2 4.47 9 

We compared our solutions with the solutions of Bischoff, and Ratcliff (1995) 

(denoted by B/R), and Gehring and Bortfeld (1996) (denoted by G/B); Bortfeld and 

Gehring (1997) (denoted by B/G); Terno, Scheithauer, Sommerweiß, and Riehme (1997) 

(denoted by T/S/S/R) in Table 4-5. Information about the G/B and the B/G results come 

from the Terno, et al. (1997). We know that G/B uses a Genetic Algorithm model and 

B/G uses a Tabu Search model. 

Table 4-5: Comparisons for the Bischoff/Ratcliff Examples 

Set# 
B/R G/B B/G T/S/S/] R OURS 

min ave max min ave max min ave max min ave max min ave max 

BR-3 73.7 85.4 94.4 76.7 85.8 94.3 78.7 89.0 95.7 75.7 89.9 95.9 78.9 89.0 95.3 
BR-5 73.8 86.3 93.8 78.4 87.3 95.2 79.7 88.7 95.0 81.9 89.6 94.7 84.8 89.0 94.0 

BR-8 75.3 85.9 92.6 81.1 88.1 92.9 82.4 88.2 94.0 83.2 89.2 93.0 84.5 88.4 92.1 

BR-10 78.4 85.1 90.1 82.7 88.0 91.6 80.9 87.4 92.0 83.1 88.9 92.7 84.4 88.2 91.9 

BR-20 75.7 83.0 88.3 84.4 87.7 90.7 79.9 83.9 88.4 80.6 86.3 89.0 84.3 87.1 90.2 
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The best competitor to our model seems to be T/S/S/R. However, it appears that 

our model is more dependable. All of the minimum values of our results are 1 to 4% 

better than T/S/S/R minimum values while average and maximum values are very 

comparable. Solution time is another important factor of interest. Our model solves any 

of 700 box sets in 1 to 12 seconds on a Pentium III 750 MHz computer. The T/S/S/R 

model uses 150 to 600 seconds on a PentiumPro 200 MHz computer. Their computer is 

about 4 times slower than ours, but our solution time is about 50-100 times faster than 

theirs. Thus, it appears we may have some processing time advantage. 

Another box set has been used by Loh and Nee (1992) (denoted by L/N); Ngoi, 

Tay, and Chua (1994) (denoted by N/T/C); Bischoff, Janetz, and Ratcliff (1995) (denoted 

by B/J/R); Bischoff, and Ratcliff (1995) (denoted by B/R); Gehring and Bortfeld (1996) 

(denoted by G/B); Bortfeld and Gehring (1997) (denoted by B/G); Terno, Scheithauer, 

Sommerweiß, and Riehme (1997) (denoted by T/S/S/R). In the Table 4-6 we compare 

the volume utilization percentages for 4 instances in that problem set. The other 11 

instances are not presented since all boxes could be packed in the container by our model. 

Again our results compare favorably. 

Table 4-6: Comparisons for the Loh/Nee Examples 

Set# #of 
Boxes 

# of Box 
Types 

L/N 
1992 

N/T/C 
1994 

B/J/R 
1995 

B/R 
1995 

G/B 
1996 

B/G 
1997 

T/S/S/R 
1997 

OURS 
2001 

Solution 
time (sec) 

LN#2 200 8 76.8 80.7 89.7 90.0 89.5 96.6 93.9 93.3 3 
LN#6 200 8 88.6 88.7 89.5 83.1 91.1 91.2 91.6 91.7 3 
LN#7 200 8 78.2 81.8 83.9 78.7 83.3 84.7 84.7 84.7 1 
LN-#13 130 7 77.0 84.1 82.3 78.1 85.6 84.3 85.1 85.6 <1 
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In Section 2.2, we stated that the model developed by Han et al. (1989) was able 

to pack 195 boxes of 11" by 6" by 6" into a 48" by 42" by 40" container. Their volume 

utilization of the container was 95.16%. They also quoted the US General Services 

Administration whose published results in 1966 for the same problem only provide 

82.5% utilization. We solved the same problem. Our model packed 196 boxes, with a 

utilization of 96.25% in less than a second. 

Another test problem that we solved was created and solved by Chen et al. (1995) 

while developing an analytical model. Faina (2000) solved the same problem by using a 

special simulated annealing algorithm. They both solved this small instance with some 

fixed orientation of each box. The problem is provided in Table 4-7. 

Table 4-7: Chen et al and Faina's Example Box Set 

Box 
Number 

Dimensions Of Boxes 
X y z 

1 25 8 6 
2 20 10 5 
3 16 7 3 
4 15 12 6 
5 22 8 3 
6 10 20 4 

They were able to pack these six boxes into a container with dimensions of 10, 

20, 35, by packing the boxes in certain defined orientations. Their solution is the optimal 

solution. Since our model rotates each box, we tested our model on this small problem 
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allowing foil rotation of all boxes. We actually improved the packing using a container 

with dimensions of 10,20, 33. 

We wanted to make further comparisons with Faina's (2000) solutions, but the 

problem sets were not presented in the paper. He provides but emphasizes that beyond 

64 boxes, the effort to improve the final placing is too expensive computationally. 

Therefore it is hard to make further comparisons. Faina also states that the results 

obtained are worse as the number of boxes increases. With our method, we see that 

increasing the number of the boxes has little affect on the solution quality, but it affects 

solution time. 

Recall our model's worst case solution time formulation with E(t)=0.18 

microseconds (10"6) for our computer, a Pentium III 750 MHz, 256 Mb, Windows 2000 

Professional. For Problem #2 presented in Table 4-1; with n=1728 and d=15, fl(t)=290 

seconds, greater than actual solution time of 189 seconds. For very large problems of say 

5000 boxes with 100 box types, d(t)=16200 seconds=4.5 hours. Since these times are 

large, we examined the impact of stopping our model early after a few iterations. A 

comparison is shown in Table 4-8. Notice our approach gives very good, possibly 

acceptable, results after just a couple of iterations. 

Table 4-8: Comparisons with Premature Solution Times 

BOX SET 
NUMBER 
OF BOXES 

INSET 

SOLUTION 
UTILIZATION 

FULL % 

FULL 
SOLUTION 
TIME (sec) 

SOLUTION 
UTILIZATION 

PREMATURE % 

PREMATURE 
SOLUTION 
TIME (sec) 

Set #2 1728 97.5 189 93.2 6 
Set #3 637 92.4 44 87.4 3 
Set #4 1493 96.4 255 88.2 4 
Set #12 576 100 4 93.8 1 
Set #13 1152 100 18 99.5 2 
Set #14 4992 100 228 97.8 93 
Set #15 1152 100 8 98.2 2 
Set #16 2784 98 315 91.7 13 
BR-3 #65 476 94.4 12 92.9 1 
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BR-5 #39 266 93.8 5 89.5 
BR-8 #39 232 89.7 5 85.9 
BR-10 #56 233 91 6 89 
BR-12 #56 218 88.1 8 86 
BR-15 #13 203 88.4 9 85.2 
BR-20#51 166 88.1 9 86 

4.3 Summary 

An algorithm is an abstraction best evaluated by experimenting with a specific 

implementation. A heuristic is a special type of algorithm. We implemented our packing 

heuristic and solved various sets of problems. Our tests demonstrate the validity of the 

model and its performance. Our model proved to be an innovative and quick running 

algorithm, producing extremely good results. 
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Chapter 5 - Conclusions and Recommendations 

5.1 Research Results 

This research developed a solution approach to the three dimensional pallet- 

packing problem. Ballew (2000) developed a mathematical formulation and explored a 

heuristic approach using a genetic algorithm. His research found that it is not practical to 

try to solve this problem by using an analytical approach. Based on not only Ballew but 

the research of others, the complexity of the three-dimensional pallet-packing problem 

appears to rule out any type of search heuristic such as genetic algorithms or simulated 

annealing. These problems do not exploit enough problem-specific knowledge. 

We built a new heuristic method. Our heuristic technique tries to mimic human 

intelligence and behavior, in particular how one would build layers, fill gaps in a layer, 

and examine various box orientations. We wrote a C program to test our algorithm, 

developed another program to visualize the best solution found, and used attributive 

memory and dynamic data structures, such as arrays and double linked lists, to improve 

processing efficiency. 

Our heuristic not only solves large problems in a small amount of time, but it also 

gives very good or optimal solutions. It is also robust and high solution quality is not 

affected by different problem characteristics. We make these claims based on empirical 

results from literature problems, test bank problems, and problems we created with a 

known optimal solution. 
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5.2 Recommendation for Future Research 

Our research showed us that powerful heuristic techniques would solve the 

distributor's three-dimensional pallet packing problem in a reasonable amount of time. 

Thus, we recommend working on employing other powerful heuristic tools or using those 

stated tools more extensively. 

The primary objective should be adding other constraints rather than increasing 

the volume utilization of the pallet. The first essential constraint to add would be the load 

stability. Other necessary constraints such as loading boxes in some certain orientations 

and weight and balance should be added one by one. 

Another avenue is to implement our heuristic within some other approach to solve 

multi-pallet packing problem. As Choocolaad (1998) and Romaine (1999) mentioned, 

the multi-pallet problem is important for Air Force mobility and deployment planning 

studies. 

A final avenue of research might be to add some sort of local improvement 

heuristic. Given some solutions, based on some pallet orientation and layer thickness, 

can minor changes yield better packings. 
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Appendix A - Pseudo-codes of The Functions 

MAIN 

Perform initialization by calling INITIALIZE(); 
Get time(START); 
Execute iterations and find the parameters of the best solution by calling 

EXECITERATIONSO; 
Get time(FINISH); 
Using the parameters found, pack the best solution found, report to the console 

and to an output text file by calling REPORT(); 
Wait until a keystroke entered by the user; 
End; 

FUNCTION INITIALIZEO 

Get the input FILENAME from the user; 
Get the pallet and box set data entered by the user from the input file by calling the 

function INPUTBOXLISTO; 
Calculate the volume of the pallet; 
Calculate the total volume of all boxes; 
Create a node and call it SCRABFIRST. Each of these double linked list nodes keeps X 
and Z coordinates of each gap in the layer currently being packed. 
SCRABFIRST.PRE=NULL;SCRABFIRST.POS=NULL; 
Initialize variables those keep the best so far and its parameters. 

FUCTION INPUTBOXLISTO 

If exists, open the file FILENAME; 
Else {Tell the user "Cannot open the file FILENAME"; end;} 

Read the first line of the input file and set the pallet dimension variables XX, YY, ZZ; 
Read every other lines in the input file and fill each field in the array BOXLIST[]. 
Now the variable TBN is already set to the total number of boxes input from the file; 
Close the file FILENAME; 
RETURN; 
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FUNCTION EXECITERATIONSO; 

ForVARIANT=lto6{ 
For each value of VARIANT get a different orientation of the pallet to the 

variables PX, PY, PZ; 
List all possible candidate values by calling LISTCANDITLAYERS(); 
Sort the array LAYERS in respect to its LAYEREVAL fields in increasing order 

by using QSORT; 
For each layer values in the LAYERS[] array, perform another iteration starting 

with that layer value as the starting layer thickness: 
For LAYERSINDEX=1 to LAYERLISTLEN { 

Get the first value of the LAYERS array as the starting 
LAYERTHICKNESS value: 
LAYERTHICKNESS=LAYERS[LAYERSINDEX].LAYERDIM 

Set all boxes' packed status to 0: 
For X=l to TBN do BOXLIST[X].PACKST=0; 

do{ 
Set the variable that shows remaining unpacked potential second 

layer height in the current layer: LAYERINLAYER=0; 
Set the flag variable that shows packing of the current layer is 

finished or not: LAYERDONE=0; 
Call PACKLAYERO, to pack the layer, and if a memory error is 

responded, exit the program; 
If there is a height available for packing in the current layer, 

perform another layer packing in the current layer: 
If LAYERINLAYER/O do{ 

Get the height available for packing in the current layer as 
the layer thickness to be packed: 
LAYERTHICKNESS=LAYERINLAYER; 

Call PACKLAYERO, to pack the layer, and if a memory 
Error is responded, exit the program; 

} 
Call FINDLAYER(REMAINPY) to determine the most suitable 

layer height fitting in the remaining unpacked height of the 
pallet; 

} While PACKINGS; 
If the volume utilization of the current iteration is better than the best so 

far, and the iterations were not quit, keep the parameters: 
(Pallet orientation, utilization, and the index of the initial layer 
height in the LAYERS array); 

If a hundred percent packing was found, exit doing iteration and 
RETURN; 
} 
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FUNCTION LISTCANDITLAYERSO; 

LAYERLISTLEN=0; 
ForX=ltoTBN{ 

Get each dimension of each box, one at a time by doing: 
ForY=lto3 { 

If Y=l do { 
EXDIM=BOXLIST[X] .DIM1; 
DIMEN2=BOXLIST[X].DIM2; 
DMEN3=BOXLIST[X].DIM3; 

} 
If Y=2 do { 

EXDIM=BOXLIST[X].DIM2; 
DMEN2=BOXLIST[X].DIMl; 
DIMEN3=BOXLIST[X].DIM3; 

} 
If Y=3 do { 

EXDIM=BOXLIST[X].DIM3; 
DIMEN2=BOXLIST[X].DIMl; 
DMEN3=BOXLIST[X].DIM2; 

} 
If any of the dimensions of the box being examined cannot fit into the 

pallet's respective dimensions, exit this loop and continue with the 
next loop; 

If EXDIM is the same as any of previously examined dimension lengths, 
exit this loop and continue with the next loop; 

Set the evaluation value of the EXDIM to 0 by doing LAYEREVAL=0; 
ForZ=ltoTBNdo{ 

Get the closest dimension value of each box to the EXDIM by 
looking at the absolute values of differences between each 
dimension and EXDIM, and selecting the smallest value; 
and set the variable DIMDIF to this value; 

Add those values cumulatively by doing: 
LAYEREVAL=LAYEREVAL+DIMDIF; 

} 
LAYERLISTLEN=LAYERLISTLEN+1; 
LAYERS[LAYERLISTLEN].LAYEREVAL=LAYEREVAL; 
LAYERS[LAYERLISTLEN].LAYERDIM=EXDIM; 

} 
} - 
RETURN; 
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FUNCTION COMPLAYERLIST(i j); 

This function is required for the compiler built in function QSORT(). 
It returns the difference between the values i and j. 

FUNCTION PACKLAYERO; 

If LAYERTHICKNESS=0 do {PACKINGS; RETURN;}; 
Initialize the first and only node to the layer's X and Z values: 

SCRAPFIRST.CUMX=PX;SCRAPFIRST.CUMZ=0; 
Perform an infinite loop unless 'Q' is typed to quit { 

Check the keyboard input, if 'Q' is hit, exit the loop and RETURN; 
To find the gap with the least Z value in the layer call FINDSMALLEST(); 

SITUATION-1: 
If there is no box on both sides of the gap do { 

Calculate the gap's X and Z dimensions; 
To find the most suitable boxes to the gap found, by looking at; 

the X-dimension of the gap: LENX, 
layerthickness of the gap: LAYERTHICKNESS, 
maximum available thickness to the gap: REMAINPY, 
maximum available Z dimension to the gap: LPZ; 
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY, LPZ, 
LPZ); 

Check on the boxes found by the FINDBOX() function by calling 
CHECKFOUNDO; 

If the packing of the layer is finished, exit the loop; 
If the edge of the layer is evened, go to the first line of the next loop; 
Add a new node to the linked list showing the topology of the edge of the 

currently being packed layer after packing a new box, and set all 
the necessary variables and pointers properly; 

To check the hundred percent packing condition, 
call VOLUMECHECKO; 

} 
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SITUATION-2: 
If there is no box on the left side of the gap do { 

Calculate the gap's X and Z dimensions; 
To find the most suitable boxes to the gap found, by looking at; 

the X dimension of the gap: LENX, 
layerthickness of the gap: LAYERTHICKNESS, 
maximum available thickness to the gap: REMAINPY, 
the Z dimension of the gap: LENZ, 
maximum available Z dimension to the gap: LPZ; 
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY, 
LENZ, LPZ); 

Check on the boxes found by the FINDBOX() function by calling 
CHECKFOUNDO; 

If the packing of the layer is finished, exit the loop; 
If the edge of the layer is evened, go to the first line of the next loop; 
Set all the necessary variables and pointers properly to represent the 

current topology of the edge of the layer that is currently being 
packed; 

If the edge of the current layer is evened, set all the necessary variables 
and pointers properly and dispose the unnecessary node; 

To check the hundred percent packing condition, call VOLUMECHECKO 

} 

SITUATION-3: 
If there is no box on the right side of the gap do { 

Calculate the gap's X and Z dimensions; 
To find the most suitable boxes to the gap found, by looking at; 

the X dimension of the gap: LENX, 
layerthickness of the gap: LAYERTHICKNESS, 
maximum available thickness to the gap: REMAINPY, 
the Z dimension of the gap: LENZ, 
maximum available Z dimension to the gap: LPZ; 
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY, 
LENZ, LPZ); 

Check on the boxes found by the FINDBOXO function by calling 
CHECKFOUNDO; 

If the packing of the layer is finished, exit the loop; 
If the edge of the layer is evened, go to the first line of the next loop; 
Set all the necessary variables and pointers properly to represent the 

current topology of the edge of the layer that is currently being 
packed; 

If the edge of the current layer is evened, set all the necessary variables 
and pointers properly and dispose the unnecessary node; 

To check the hundred percent packing condition, call VOLUMECHECK() 

} 
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SITUATION-4: IF THERE ARE BOXES ON BOTH SIDES OF THE GAP 

SUBSITUATION-4A 
If the Z dimensions of the gap is the same on both sides { 

Calculate the gap's X and Z dimensions; 
To find the most suitable boxes to the gap found, by looking at; 

the X dimension of the gap: LENX, 
layerthickness of the gap: LAYERTHICKNESS, 
maximum available thickness to the gap: REMAINPY, 
the Z dimension of the gap: LENZ, 
maximum available Z dimension to the gap: LPZ; 
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY, 
LENZ, LPZ); 

Check on the boxes found by the FINDBOX() function by calling 
CHECKFOUNDO; 

If the packing of the layer is finished, exit the loop; 
If the edge of the layer is evened, go to the first line of the next loop; 
Set all the necessary variables and pointers properly to represent the 

current topology of the edge of the layer that is currently being 
packed; 

While updating the edge of topology information, if a part of the topology 
is evened, dispose unnecessary nodes, and update the others 
properly; 

While updating the edge of topology information, if another gap is added 
to the topology, add a new node to keep this gap, and update the 
others properly; 

To check the hundred percent packing condition, 
call VOLUMECHECKO; 

} 
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SUBSITUATI0N-4B 
If the Z dimension of the gap is different on both sides { 

Calculate the gap's X and Z dimensions; 
To find the most suitable boxes to the gap found, by looking at; 

the X dimension of the gap: LENX, 
layerthickness of the gap: LAYERTHICKNESS, 
maximum available thickness to the gap: REMAINPY, 
the Z dimension of the gap: LENZ, 
maximum available Z dimension to the gap: LPZ; 
call FINDBOX(LENX, LAYERTHICKNESS, REMAINPY, 
LENZ, LPZ); 

Check on the boxes found by the FINDBOX() function by calling 
CHECKFOUNDO; 

If the packing of the layer is finished, exit the loop; 
If the edge of the layer is evened, go to the first line of the next loop; 
Set all the necessary variables and pointers properly to represent the 

current topology of the edge of the layer that is currently being 
packed; 

While updating the edge of topology information, if another gap is added 
to the topology, add a new node to keep this gap, and update the 
others properly; 

To check the hundred percent packing condition, 
call VOLUMECHECKO; 

} 
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FUNCTION FINDLAYERO; 

Set the overall evaluation value to a big number: EVAL= 1000000; 
ForX=ltoTBN{ 

If the box number X has already been packed continue with the next loop: 
If BOXLIST[X].PACKST*0 continue; 

Get each dimension of each box, one at a time by doing: 
ForY=lto3 { 

If Y=l do { 
EXDIM=B0XLIST[X].DIM1; 
DMEN2=BOXLIST[X].DIM2; 
DMEN3=BOXLIST[X].DIM3; 

} 
If Y=2 do { 

EXDIM=BOXLIST[X].DIM2; 
DEVIEN2=B0XLIST[X].DIM1; 
DIMEN3=BOXLIST[X].DIM3; 

} 
If Y=3 do { 

EXDIM=BOXLIST[X].DIM3; 
DMEN2=B0XLIST[X].DIM1; 
DMEN3=BOXLIST[X].DIM2; 

} 
If any of the dimensions of the box being examined cannot fit into the 

pallet's respective dimensions, exit this loop and continue with the 
next loop; 

Set the evaluation value of the EXDIM to 0 by doing LAYEREVAL=0; 
ForZ=ltoTBNdo{ 

Get the closest dimension value of each box to the EXDIM by 
looking at the absolute values of differences between each 
dimension and EXDIM, and selecting the smallest value; 
and set the variable DIMDIF to this value. 

Add those values cumulatively by doing: 
LAYEREVAL=LAYEREVAL+DMDIF; 

} 
If the dimension that has just been examined has a smaller evaluation 

value, keep that dimension: 
If (LAYEREVAL<EVAL) do { EVAL=LAYEREVAL; 

LAYERTHICKNESS-EXDIM}; 
} 

} 
RETURN; 
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FUNCTION FINDBOX (HMX: Maximum X dimension of the gap; 
HY: Y dimension of the gap; HMY: Maximum Y dimension of the gap; 
HZ: Z dimension of the gap; HMZ: Maximum Z dimension of the gap); 

Set all evaluation values to big numbers: 
For the box type fitting in the current layerthickness: 

BFX=32767; BFY=32767; BFZ=32767; 
For the box type that cannot fit in the current layerthickness, but the closest one: 

BFX=32767; BFY=32767; BFZ=32767; 
For Y=l to TBN with step BOXLIST[Y].N do{ (Examines only different boxes) 

If the box that is being examined has been packed before, continue with the next 
loop; 

X=The index of the box that has not been packed before among a certain type of 
box; 

Analyze all six possible orientations of the box being examined: 
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIMl, 

BOXLIST[X].DIM2, BOXLIST[X].DIM3); 
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIMl, 

BOXLIST[X].DIM3,BOXLIST[X].DIM2); 
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIM2, 

BOXLIST[X].DIMl, BOXLIST[X].DIM3); 
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIM2, 

BOXLIST[X].DIM3,BOXLIST[X].DIMl); 
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIM3, 

BOXLIST[X].DIMl,BOXLIST[X].DIM2); 
ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, BOXLIST[X].DIM3, 

BOXLIST[X].DIM2, BOXLIST[X].DIMl); 
} 
RETURN; 
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FUNCTION ANALYZEBOX (HMX, HY, HMY, HZ, HMZ, DIM1, DIM2, DIM3); 

(If all dimensions of the given box fit the maximum space in the gap:) 
If (DIMK=HMX and DIM2<=HMY and DIM3<=HMZ) do{ 

(If the y-dimension of the current orientation of the box fits to the gap's 
layer thickness:) 

If(DIM2<=HY)do{ 
If the current box is a better fit in respect to its y-dimension compared to 

the one selected before, keep the index of the current box in the 
variable BOXI; 

If the current box has the same y-dimension as the y-dimension of the 
selected one before, and the current box is a better fit in respect to 
its x-dimension compared to the selected one before, keep the 
index of the current box in the variable BOXI; 

If the current box has the same y and x-dimensions as the y and x 
dimensions of the selected one before, and the current box is a 
better fit in respect to its z-dimension compared to the one selected 
before, keep the index of the current box in the variable BOXI; 

} 
(If the y-dimension of the current orientation of the box is bigger than the gap's 

layer thickness:) 
If(DIM2>HY)do{ 

If the current box is a better fit in respect to its y-dimension compared to 
the one selected before, keep the index of the current box in the 
variable BBOXI; 

If the current box has the same y-dimension as the y-dimension of the 
selected one before, and the current box is a better fit in respect to 
its x-dimension compared to the selected one before, keep the 
index of the current box in the variable BBOXI; 

If the current box has the same y and x-dimensions as the y and x- 
dimensions of the selected one before, and the current box is a 
better fit in respect to its z-dimension compared to the one selected 
before, keep the index of the current box in the variable BBOXI; 

} 
} 
RETURN; 
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FUNCTION FINDSMALLESTO; 

Get the first node of the linked list representing the edge topology of the current layer: 
SCRAPMEMB=SCRAPFIRST; 

Assign it to the variable which will keep the node with a smallest z-value: 
SMALLESTZ=SCRAPMEMB; 

While SCRAPMEMB.POS^NULL do { 
If (SCRAPMEMB.POS).CUMZ < SMALLEST.CUMZ then 

SMALLESTZ=SCRAPMEMB.POS; 
SCRAPMEMB-SCRAPMEMB.POS; 

} 
RETURN; 

FUNCTION CHECKFOUND (); 

(If a box fitting in the current layer thickness has been found, keep its index and 
orientation for packing:) 

If BOXI/0 then do{ CBOXI=BOXI; CBOXX=BOXX; CBOXY=BOXY; 
CBOXZ=BOXZ}; 

Else{ 
If a box with a bigger y-dimension than the current layer thickness has been found 

and the edge of the current layer is even then select that box and set 
LAYERINLAYER variable for a second layer packing in the current layer 
and update the LAYERTHICKNESS=BBOXY; 

Else { 
If there is no gap in the edge of the current layer, packing of the layer is 

done:LAYERDONE=l; 
Else: Since there is no fitting box to the currently selected gap, skip that 

gap and even it by arranging and updating the necessary nodes and 
variables; 

} 
} 
RETURN; 
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FUNCTION VOLUMECHECK (); 

Mark the current box as packed: BOXLIST[CBOXI].PACKED=l; 
Keep the orientation of the current box as it is packed: 

BOXLIST[CBOXI].PACKX=CBOXX; 
BOXLIST[CBOXI].PACKY=CBOXY; 
BOXLIST[CBOXI].PACKZ=CBOXZ; 

Update the total packed volume: 
PACKEDVOLUME=PACKEDVOLUME+BOXLIST[CBOXI].VOL; 

Update the number of boxes packed: PACKEDNUMBOX=PACKEDNUMBOX+l; 
(If performing the best so far packing after being done with the iterations:) 
If PACKINGBEST=1 do { 

To write the information of the packed box to the visualization data file named 
"VISUAL", call GRAPHUNPACKEDOUT; 

To write the information of the packed box to the report file, 
call OUTPUTBOXLIST; 

} 
Else if a hundred percent packing of the pallet has been reached or the total volume of the 

packed boxes is equal to the total volume of the input box set { 
Packing is finished: PACKING=0; 
A hundred percent packing has been reached: HUNDREDPERCENT=1; 

} 
RETURN; 

FUNCTION GRAPHUNPACKEDOUTO; 

If this function is called for a visualization data out, write the necessary information to 
the file "VISUAL"; 

Else merge the unpacked box information to the end of the report file; 
RETURN; 

OUTPUTBOXLIST (); 

Transform the coordinate system and orientation of every box from the best solution 
format to the pallet orientation entered by the user in the input text file by looking 
at the value of the variable BESTVARIANT; 

Write the transformed box information (coordinates and the dimensions as is has been 
packed) to the REPORT file; 

RETURN; 
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FUNCTION REPORT (); 

Set the necessary variables to start the best packing found properly; 
According to the BESTVARIANT value, determine the orientation of the pallet; 
To tell other functions that the best packing found is being performed: 

PACKINGBEST=1; 
Write the header information about the best solution found to the visualization data file 

"VISUAL"; 
Write the header information about the best solution found to the report data file; 
List all possible candidate values by calling LISTCANDITLAYERS(); 
Sort the array LAYERS in respect to its LAYEREVAL fields in increasing order by 

using QSORT; 
Set the starting layer thickness value to the best solution's starting layer thickness value: 

LAYERTHICKNESS=LAYERS[BESTITE].LAYERDIM; 
Set all boxes' packed status to 0: For X=l to TBN do BOXLIST[X].PACKST=0; 
do{ 

Set the variable that shows remaining unpacked potential second layer height in 
the current layer: LAYERINLAYER=0; 

Set the flag variable that shows packing of the current layer is finished or not: 
LAYERDONE=0; 

Call PACKLAYERO, to pack the layer, and if a memory error is responded, exit 
the program; 

If there is a height available for packing in the current layer, perform another 
layer packing in the current layer: 

-      If LAYERINLAYER*0 do { 
Get the height available for packing in the current layer as the layer 

thickness to be packed: LAYERTHICKNESS=LAYERINLAYER; 
Call PACKLAYERO, to pack the layer, and if a memory error is 

responded, exit the program; 
} 
Call FINDLAYER(REMAINPY) to determine the most suitable layer height 

fitting in the remaining unpacked height of the pallet; 
} While PACKINGS; 
Get the difference of the start time and the finish time; 
Close both the visualization data file and the report file; 
Write all the information about packing to the console; 
RETURN; 
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Appendix B - The C Program Code of the Model 

// INCLUDED HEADER FILES 

#include <time.h> 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <malloc.h> 
#include <conio.h> 

// FUNCTION PROTOTYPES 

void initialize(void); 
void inputboxlist(void); 
void execiterations(void); 
void listcanditlayers(void); 
inteomplayerlist(const void *i, const void *j); 
int packlayer(void); 
int findlayer( short int thickness); 
void flndbox(short int hmx, short int hy, short int hmy, short int hz, short int hmz); 
void analyzebox (short int hmx, short int hy, short int hmy, short int hz, short int hmz, 

short int diml, short int dim2, short int dim3); 
void findsmallestz(void); 
void checkfound(void); 
void volumecheck (void); 
void graphunpackedout(void); 
void outputboxlist(void); 
void report(void); 
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//****:l; :(:******************** ****************************** 

// VARIABLE, CONSTANT AND STRUCTURE DECLARATIONS 
//******************************************************** 

char strpx[5], strpy[5], strpz[5], strcox[5], strcoy[5], strcoz[5], strpackx[5], strpacky[5], 
strpackz[5], filename[12], strtemp[]="", packing, layerdone, evened, variant, 
bestvariant, packingbest, hundredpercent, graphout[]="visudat", unpacked, quit; 

short int tbn, x, n, layerlistlen, layerinlayer, prelayer, lilz, itenum, hour, min, sec, 
layersindex, remainpx, remainpy, remainpz, packedy, prepackedy, layerthickness, 
itelayer, boxx, boxy, boxz, boxi, bboxx, bboxy, bboxz, bboxi, preremainpy, cboxi, 
cboxx, cboxy, cboxz, bfx, bfy, bfz, bbfx, bbfy, bbfz, bestite, packednumbox, 
bestpackednum, xx, yy, zz, px, py, pz; 

double packedvolume, bestvolume, totalvolume, totalboxvol, temp, percentageused, 
percentagepackedbox, elapsedtime; 

struct boxinfo { 
char packst; 
short int diml, dim2, dim3, n, cox, coy, coz, packx, packy, packz; 
long int vol; 

} boxlist[5000]; 

struct layerlist{ 
long int layereval; 
short int layerdim; 

} layers[1000]; 

struct scrappad{ 
struct scrappad *pre, *pos; 
short int cumx, cumz; 

}; 

struct scrappad *scrapfirst, *scrapmemb, *smallestz, *trash; 

time_t start, finish; 

FILE *ifp, *ofp, *gfp; 
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//MAIN PROGRAM 

int main(int arge, char *argv[]) { 
if(argc==l){ 

printf ("(ASSUMED TO HAVE '.TXT' EXTENSION; UP TO 8 
CHARACTERS LONG)\n"); 

printf ("PLEASE ENTER THE NAME OF THE INPUT FILE :"); 
scanf ("%s",filename); 

} 
else { 

printf("%s", argv[l]); 
strcpy(filename, argv[l]); 

} 
initialize(); 
time(&start); 
printf("\nPRESS Q TO QUIT AT ANYTIME AND WAIT\n\n"); 
execiterations(); 
time(&finish); 
reportO; 
getch(); 
return 0; 

} 

// PERFORMS INITIALIZATIONS 

void initialize(void) { 
if(filename=""){ 

printf("\nINVALID FILE NAMEW); 
exit(l); 

} 
inputboxlist(); 
temp=1.0; totalvolume=temp*xx*yy*zz; totalboxvol=0.0; 
for (x=l; x<=tbn; x++) totalboxvol=totalboxvol+boxlist[x].vol; 
scrapfirst=malloc(sizeof(structscrappad)); 
if ((*scrapfirst).pos==NULL) { 

printf("Insufficient memory available\n"); 
exit(l); 

-      } 
(*scrapfirst).pre=NULL;(*scrapfirst).pos=NULL; 
bestvolume=0.0; packingbest=0; hundredpercent=0; itenum=0; quit=0; 

} 
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II********************************************************************** 

II READS THE PALLET AND BOX SET DATA ENTERED BY THE USER FROM 
// THE INPUT FILE 
II********************************************************************** 

void inputboxlist(void){ 

short int n; 
char lbl[5], diml[5], dim2[5], dim3[5], boxn[5], strxx[5], stryy[5], strzz[5]; 

strcpy(strtemp, filename); 
strcat(strtemp,".txt"); 
if ((ifp=fopen(strtemp,"r"))==NULL) { 

printf("Cannot open file %s", strtemp); 
exit(l); 

} 
tbn=l; 
if (fscanf(ifp,"%s %s %s",strxx, stryy, strzz)==EOF) exit(l); 
xx=atoi(strxx); yy=atoi(stryy); zz=atoi(strzz); 
while (fscanf(ifp,"%s %s %s %s %s",lbl,diml,dim2,dim3,boxn)!=EOF){ 

boxlist[tbn] .diml =atoi(diml); 
boxlist[tbn] .dim2=atoi(dim2); 
boxlist[tbn] .dim3=atoi(dim3); 
boxlistftbn]. vol=boxlist[tbn] .diml *boxlist[tbn] .dim2*boxlist[tbn] .dim3; 
n=atoi(boxn); boxlist[tbn].n=n; 
while (~n) boxlist[tbn+n]=boxlist[tbn]; 
tbn=tbn+atoi(boxn); 

} 
-tbn; 
fclose(ifp); 
return; 
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// ITERATIONS ARE DONE AND PARAMETERS OF THE BEST SOLUTION ARE 
// FOUND 

void execiterations(void){ 
for (variant=l; (variant<=6) & Iquit; variant++){ 

switch(variant){ 
case 1: 

px=xx; py=yy; pz=zz; 
break; 

case 2: 
px=zz; py=yy; pz=xx; 
break; 

case 3: 
px=zz; py=xx; pz=yy; 
break; 

case 4: 
px=yy; py=xx; pz=zz; 
break; 

case 5: 
px=xx; py=zz; pz=yy; 
break; 

case 6: 
px=yy; py=zz; pz=xx; 
break; 

} 
listcanditlayers(); 
layers[0] .layereval=-1; 
qsort(layers,layerlistlen+1 ,sizeof(struct layerlist),complayerlist); 
for (layersindex=l; (layersindex<=layerlistlen) & Iquit; layersindex++){ 

++itenum; 
time(&finish); 
elapsedtime = difftime( finish, start); 
printf("VARIANT: %5d; ITERATION (TOTAL): %5d; BEST SO 

FAR: %.3f %%; TIME: %.0f*, 
variant, itenum, percentageused, elapsedtime); 

packedvolume=0.0; 
packedy=0; 
packing=l; 
layerthickness^layerstlayersindexj.layerdim; 
itelayer=layersindex; 
remainpy=py; remainpz=pz; 
packednumbox=0; 
for (x=l; x<=tbn; x++) boxlist[x].packst=0; 
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do{ 
layerinlayer=0; 
layerdone=0; 
if (packlayer()) exit( 1); 
packedy=packedy+layerthickness; 
remainpy=py-packedy; 
if (layerinlayer & !quit){ 

prepackedy=packedy; 
preremainpy=remainpy; 
remainpy=layerthickness-prelayer; 
packedy=packedy-layerthickness+prelayer; 
remainpz^lilz; 
layerthickness=layerinlayer; 
layerdone=0; 
if (packlayerO) exit( 1); 
packedy=prepackedy; 
remainpy=preremainpy; 
remainpz=pz; 

} 
findlayer(remainpy); 

} 
while (packing & !quit); 
if ((packedvolumObestvolume) & !quit) { 

bestvolume=packedvolume; 
bestvariant^variant; 
bestite=itelayer; 
bestpackednum=packednumbox; 

} 
if (hundredpercent) break; 
percentageused=bestvolume* 100/totalvolume; 
printf("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b 

\b\b\b\b\b\b\b\b\b\b\b"); 
printf("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b 

\b\b\b\b\b\b\b"); 
} 
if (hundredpercent) break; 
if ((xx=yy) & (yy==zz)) variant=6; 
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// LISTS ALL POSSIBLE LAYER HEIGHTS BY GIVING A WEIGHT VALUE TO 
// EACH OF THEM. 

void listcanditlayers(void){ 

char same; 
short int exdim,dimdif,dinien2,dimen3,y,z,k; 
long int layereval; 

layerlistlen=0; 
for (x=l; x<=tbn; x++){ 

for(y=l;y<=3;y++){ 
switch(y) { 
case 1: 

exdim=boxlist[x] .diml; 
dimen2=boxlist[x] .dim2; 
dimen3=boxlist[x] .dim3; 
break; 

case 2: 
exdim=boxlist[x] .dim2; 
dimen2=boxlist[x].diml; 
dimen3=boxlist[x] .dim3; 
break; 

case 3: 
exdim^boxlistfx] .dim3; 
dimen2=boxlist[x] .dim 1; 
dimen3=boxlist[x] .dim2; 
break; 

} 
if ((exdim>py) || (((dimen2>px) || (dimen3>pz)) & 

((dimen3>px) || (dimen2>pz)))) continue; 
same=0; 
for (k=l; k<=layerlistlen; k++) if (exdim=layers[k].layerdim){ 

same=l; 
continue; 

} 
if (same) continue; 
layereval=0; 
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} 
} 
return; 

for (z=l; z<=tbn; z++){ 
if(!(x==z)){ 

dimdif=abs(exdim-boxlist[z].diml); 
if (abs(exdim-boxlist[z] .dim2)<dimdif) 

dimdif=abs(exdim-boxlist[z].dim2); 
if (abs(exdim-boxlist[z] .dim3)<dimdif) 

dimdif=abs(exdim-boxlist[z].dim3); 
layereval=layereval+dimdif; 

} 
} 
layers[++layerlistlen].layereval=layereval; 
layers [layerlistlen].layerdim=exdim; 

} 

// REQUIRED FUNCTION FOR QSORT FUNCTION TO WORK 

int complayerlist(const void *i, const void *j){ 
return *( long int*)i-*( long int*)j; 

} 

// PACKS THE BOXES FOUND AND ARRANGES ALL VARIABLES AND 
// . RECORDS PROPERLY 

int packlayer( void){ 

short int lenx, lenz, lpz; 

if (llayerthickness) { 
packing=0; return 0; 

} 
(*scrapfirst).cumx=px;(*scrapfirst).cumz=0; 
for(;!quit;){ 

if (kbhitO) if (toupper(getch())==*Q') { 
quit=l; 
printf("\n\nWait please...\n"); 

} 
findsmallestz(); 
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//*** SITUATION-1: NO BOXES ON THE RIGHT AND LEFT SIDES *** 

if (!(*smallestz).pre & !(*smallestz).pos){ 
lenx=(* smallestz). cumx; 
lpz=remainpz-(*smallestz).cumz; 
findbox(lenx, layerthickness, remainpy, lpz, lpz); 
checkfound(); 
if (layerdone) break; 
if (evened) continue; 
boxlist[cboxi].cox=0;boxlist[cboxi].coy=packedy; 
boxlist[cboxi].coz=(*smallestz).cumz; 
if (cboxx==(*smallestz).cumx) 

(*smallestz).cumz=(*smallestz).cumz+cboxz; 
else { 

(*smallestz).pos=malloc(sizeof(structscrappad)); 
if ((*smallestz).pos==NULL) { 

printf("Insufficient memory available\n"); 
return 1; 

} 
(*((*smallestz).pos)).pos=NULL; 
(*((*smallestz).pos)).pre=smallestz; 
(*((*smallestz).pos)).cumx=(*smallestz).cumx; 
(*((*smallestz).pos)).cumz=(*smallestz).cumz; 
(*smallestz).cumx=cboxx; 
(*smallestz).cumz=(*smallestz).cumz+cboxz; 

} 
volumecheck(); 

} 

//*** SITUATION-2: NO BOXES ON THE LEFT SIDE *** 

else if (!(*smallestz).pre) { 
lenx=(*smallestz).cumx; 
lenz=(*((*smallestz).pos)).cumz-(*smallestz).cumz; 
lpz=remainpz-(* smallestz) .cumz; 
findbox(lenx, layerthickness, remainpy, lenz, lpz); 
checkfound(); 
if (layerdone) break; 
if (evened) continue; 
boxlist[cboxi]. coy=packedy; 
boxlist[cboxi].coz=(*smallestz).cumz; 
if (cboxx==(*smallestz).cumx) { 

boxlist[cboxi].cox=0; 
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if (*smallestz).cumz+cboxz=(*((*smallestz).pos)).cumz) { 
(*smallestz).cumz=(*((*smallestz).pos)).cumz; 
(*smallestz).cumx=(*((*smallestz).pos)).cumx; 
trash=(*smallestz).pos; 
(*smallestz).pos=(*((*smallestz).pos)).pos; 
if ((*smallestz).pos) 

(*((*smallestz).pos)).pre=smallestz; 
free(trash); 

} 
else (* smallestz). cumz=(* smallestz) .cumz+cboxz; 

} 
else { 

boxlist[cboxi].cox=(*smallestz).cumx-cboxx; 
if((*smallestz).cumz+cboxz==(*((*smallestz).pos)).cumz) 

(*smallestz).cumx=(*smallestz).cumx-cboxx; 
else { 

(*((*smallestz).pos)).pre= 
malloc(sizeof(struct scrappad)); 

if ((*((*smallestz).pos)).pre=NULL) { 
printf("Insufficient memory available\n"); 
return 1; 

} 
(*((*((*smallestz).pos)).pre)).pos=(*smallestz).pos; 
(*((*((*smallestz).pos)).pre)).pre=smallestz; 
(*smallestz).pos=(*((*smallestz).pos)).pre; 
(*((*smallestz).pos)).cumx=(*smallestz).cumx; 
(*smallestz).cumx=(*smallestz).cumx-cboxx; 
(*((*smallestz).pos)).cumz= 

(*smallestz).cumz+cboxz; 

} 
} 
volumecheckQ; 
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//*** SITUATION-3: NO BOXES ON THE RIGHT SIDE *** 

else if (!(*smallestz).pos){ 
lenx=(*smallestz)xumx-(*((*smallestz).pre)).cumx; 
lenz=(*((*smallestz).pre)).cumz-(*smallestz).cuinz; 
lpz=remainpz-(* smallestz). cumz; 
findbox(lenx, layerthickness, remainpy, lenz, lpz); 
checkfound(); 
if (layerdone) break; 
if (evened) continue; 
boxlist[cboxi] .coy=packedy; 
boxlist[cboxi].coz=(*smallestz).cumz; 
boxlist[cboxi].cox=(*((*smallestz).pre)).cumx; 
if (cboxx=(*smallestz).cumx-(*((*smallestz).pre)).cumx) { 

if((*smallestz).cumz+cboxz==(*((*smallestz).pre)).cumz){ 
(*((*smallestz).pre)).cumx=(*smallestz).cumx; 
(*((*smallestz).pre)).pos=NULL; 
free(smallestz); 

} 
else(*smallestz).cumz=(*smallestz).cumz+cboxz; 

} 
else { 

if((*smallestz).cumz+cboxz=(*((*smallestz).pre)).cumz) 
(*((*smallestz).pre)).cumx= 

(*((*smallestz).pre)).cumx+cboxx; 
else { 

(*((*smallestz).pre)).pos= 
malloc(sizeof(struct scrappad)); 

if ((*((*smallestz).pre)).pos=NULL) { 
printf("Insufficient memory availableW); 
return 1; 

} 
(*((*((*smallestz).pre)).pos)).pre=(*smallestz).pre; 
(*((*((*smallestz).pre)).pos)).pos=smallestz; 
(*smallestz).pre=(*((*smallestz).pre)).pos; 
(*((*smallestz).pre)).cumx= 

(*((*((*smallestz).pre)).pre)).cumx+cboxx; 
(*((*smallestz).pre)).cumz= 

(*smallestz).cumz+cboxz; 

} 
} 
volumecheck(); 

B-ll 



//*** SITUATION-4: THERE ARE BOXES ON BOTH OF THE SIDES *** 

//*** SUBSITUATION-4A: SIDES ARE EQUAL TO EACH OTHER *** 

else if ((*((*smallestz).pre)).cumz==(*((*smallestz).pos)).cumz) { 
lenx=(*smallestz).cumx-(*((*smallestz).pre)).cumx; 
lenz=(*((*smallestz).pre))xumz-(*smallestz).cumz; 
lpz=remainpz-(*smallestz).cumz; 
findbox(lenx, layerthickness, remainpy, lenz, lpz); 
checkfound(); 
if (layerdone) break; 
if (evened) continue; 
boxlist[cboxi] .coy=packedy;boxlist[cboxi] .coz=(*smallestz).cumz; 
if (cboxx==(*smallestz).cumx-(*((*smallestz).pre)).cumx) { 

boxlist[cboxi].cox=(*((*smallestz).pre)).cumx; 
if((*smallestz).cumz+cboxz=(*((*smallestz).pos)).cumz){ 

(*((*smallestz).pre)).cumx= 
(*((*smallestz).pos)).cumx; 

if ((*((*smallestz).pos)).pos) { 
(*((*smallestz).pre)).pos= 

(*((*smallestz).pos)).pos; 
(*((*((*smallestz).pos)).pos)).pre= 

(*smallestz).pre; 
free(smallestz); 

} 
else { 

(*((*smallestz).pre)).pos=NULL; 
free(smallestz); 

} 
} 
else(*smallestz).cumz=(*smallestz).cumz+cboxz; 

} 
else if ((*((*smallestz).pre)).cumx<px-(*smallestz).cumx) { 

if((*smallestz).cumz+cboxz=(*((*smallestz).pre)).cumz){ 
(*smallestz).cumx=(*smallestz).cumx-cboxx; 
boxlist[cboxi].cox=(*smallestz).cumx-cboxx; 

} 
else { 

boxlist[cboxi].cox=(*((*smallestz).pre)).cumx; 
(*((*smallestz).pre)).pos= 

malloc(sizeof(struct scrappad)); 
if ((*((*smallestz).pre)).pos==NULL) { 

printf("Insufficient memory available\n"); 
return 1; 

} 
(*((*((*smallestz).pre)).pos)).pre=(*smallestz).pre; 
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} 

(*((*((*smallestz).pre)).pos)).pos=smallestz; 
(*smallestz).pre=(*((*smallestz).pre)).pos; 
(*((*smallestz).pre)).cumx= 

(*((*((*smallestz).pre)).pre)).cumx+cboxx; 
(*((*smallestz).pre)).cumz= 

(*smallestz).cumz+cboxz; 

} 
} 
else { 

if((*smallestz).cumz+cboxz==(*((*smallestz).pre)).cumz){ 
(*((*smallestz).pre)).cumx= 

(*((*smallestz).pre)).cumx+cboxx; 
boxlist[cboxi].cox=(*((*smallestz).pre)).cumx; 

} 
else { 

boxlist[cboxi].cox=(*smallestz).cumx-cboxx; 
(*((*smallestz).pos)).pre= 

malloc(sizeof(struct scrappad)); 
if ((*((*smallestz).pos)).pre=NULL) { 

printf("Insufficient memory available\n"); 
return 1; 

} 
(*((*((*smallestz).pos)).pre)).pos=(*smallestz).pos; 
(*((*((*smallestz).pos)).pre)).pre=smallestz; 
(*smallestz).pos=(*((*smallestz).pos)).pre; 
(*((*smallestz).pos)).cumx=(*smallestz).cumx; 
(*((*smallestz).pos)).cumz= 

(*smallestz).cumz+cboxz; 
(*smallestz).cumx=(*smallestz).cumx-cboxx; 

} 
} 
volumecheckQ; 

//*** SUBSITUATION-4B: SIDES ARE NOT EQUAL TO EACH OTHER *** 

else { 
lenx=(*smallestz).cumx-(*((*smallestz).pre)).cumx; 
lenz=(*((*smallestz).pre)).cumz-(*smallestz).cumz; 
lpz=remainpz-(* smallestz) .cumz; 
findbox(lenx, layerthickness, remainpy, lenz, lpz); 
checkfound(); 
if (layerdone) break; 
if (evened) continue; 
boxlist[cboxi] .coy=packedy;boxlist[cboxi] .coz=(*smallestz).cumz; 
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boxlist[cboxi].cox=(*((*smallestz).pre)).cumx; 
if (cboxx==(*smallestz).cumx-(*((*smallestz).pre)).cumx) { 

if((*smallestz).cumz+cboxz==(*((*smallestz).pre)).cnmz) { 
(*((*smallestz).pre)).cumx=(*smallestz).cumx; 
(*((*smallestz).pre)).pos=(*smallestz).pos; 
(*((*smallestz).pos)).pre=(*smallestz).pre; 
free(smallestz); 

} 
else(*smallestz).cumz=(*smallestz).cumz+cboxz; 

} 
else { 

if((*smallestz).cumz+cboxz==(*((*smallestz).pre)).cumz) 
(*((*smallestz).pre)).cumx= 

(*((*smallestz).pre)).cumx+cboxx; 
else if ((*smallestz).cumz+cboxz== 

(*((*smallestz).pos)).cumz) { 
boxlist[cboxi].cox=(*smallestz).cumx-cboxx; 
(*smallestz).cumx=(*smallestz).cumx-cboxx; 

} 
else{ 

} 
} 
volumecheck(); 

} 
} 
return 0; 

(* ((* smallestz).pre)) .pos= 
malloc(sizeof(struct scrappad)); 

if ((*((*smallestz).pre)).pos=NULL) { 
printf("Insufficient memory available\n"); 
return 1; 

} 
(*((*((*smallestz).pre)).pos)).pre=(*smallestz).pre; 
(*((*((*smallestz).pre)).pos)).pos=smallestz; 
(*smallestz).pre=(*((*smallestz).pre)).pos; 
(*((*smallestz).pre)).cumx= 

(*((*((*smallestz).pre)).pre)).cumx+cboxx; 
(*((*smallestz).pre)).cumz= 

(*smallestz).cumz+cboxz; 
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//********************************************************************** 

// FINDS THE MOST PROPER LAYER HIGHT BY LOOKING AT THE UNPACKED 
// BOXES AND THE REMAINING EMPTY SPACE AVAILABLE 
//********************************************************************** 

int findlayer( short int thickness) { 

short int exdim,dimdif,dimen2,dimen3,y,z; 
long int layereval, eval; 

layerthickness=0; 
eval=l 000000; 
for(x=l;x<=tbn;x++){ 

if (boxlist[x].packst) continue; 
for(y=l;y<=3;y++){ 

switch(y) { 
case 1: 

exdim=boxlist[x].diml; 
dimen2=boxlist[x] .dim2; 
dimen3=boxlist[x] .dim3; 
break; 

case 2: 
exdim=boxlist[x] .dim2; 
dimen2=boxlist[x] .dim 1; 
dimen3=boxlist[x].dim3; 
break; 

case 3: 
exdim=boxlist[x] .dim3; 
dimen2=boxlist[x].diml; 
dimen3=boxlist[x] .dim2; 
break; 

} 
layereval=0; 
if ((exdim<=thickness) & (((dimen2<=px) & 

(dimen3<=pz)) || ((dimen3<=px) & (dimen2<=pz)))) { 
for(z=l;z<=tbn;z++){ 

if (!(x==z) & !(boxlist[z].packst)){ 
dimdif=abs(exdim-boxlist[z].diml); 
if (abs(exdim-boxlist[z] .dim2)<dimdif) 

dimdif=abs(exdim-boxlist[z] .dim2); 
if (abs(exdim-boxlist[z] .dim3)<dimdif) 

dimdif=abs(exdim-boxlist[z].dim3); 
layereval=layereval+dimdif; 

} 
} 
if (layerevaKeval) { 
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eval=layereval; 
layerthickness=exdim; 

} 
} 

} 
} 
if (layerthickness==0 || layerthickness>remainpy) packing=0; 
return 0; 

} 

// FINDS THE MOST PROPER BOXES BY LOOKING AT ALL SEX POSSIBLE 
// ORIENTATIONS, EMPTY SPACE GIVEN, ADJACENT BOXES, 
// AND PALLET LIMITS 

void findbox(short int hmx, short int hy, short int hmy, short int hz, short int hmz){ 
short int y; 

bfx=32767; bfy=32767; bfz=32767; 
bbfx=32767; bbfy=32767; bbfz=32767; 
boxi=0; bboxi=0; 
for (y=l; y<=tbn; y=y+boxlist[y].n){ 

for (x=y; x<x+boxlist[y].n-l; x++) if (!boxlist[x].packst) break; 
if (boxlist[x].packst) continue; 
if (x>tbn) return; 
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].diml, boxlist[x].dim2, 

boxlist[x].dim3); 
if ((boxlist[x].diml=boxlist[x].dim3) & 

(boxlist[x] .dim3==boxlist[x] .dim2)) continue; 
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].diml, boxlist[x].dim3, 

boxlist[x].dim2); 
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].dim2, boxlist[x].diml, 

boxlist[x].dim3); 
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].dim2, boxlist[x].dim3, 

boxlist[x].diml); 
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].dim3, boxlist[x].diml, 

boxlist[x].dim2); 
analyzebox (hmx, hy, hmy, hz, hmz, boxlist[x].dim3, boxlist[x].dim2, 

boxlist[x].diml); 
} 

} 
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// ANALYZES EACH UNPACKED BOX TO FIND THE BEST FITTING ONE TO 
// THE EMPTY SPACE GIVEN 
/ / J» -'- -'- -'- -'- -'■* -'- -'- -'- -'- -'■' -'■* -'» -t» -'» -'■* **- -** ■'- *'- ^» >i^ >t« A >tj A A A A A >>. ^. A A .1. .t. A A A A A A A A »l* »l* »l» »U »t» «I« »1» «I» «t» «IJ «I» »U «1» »i« «1* «1» *l» *1» «I» «1« «1» «1» ■!» ■!■ 
/ / T* ^ ^ V n* V V ^ V V V ^ T* ^ V ^ V ^ T* V ^ ^ ^ ^ V ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ V ^ *r ^ "P ^ * * V * V ^ ^ ^T * * ^ * * * * * * * * * ^ ^ * ^ ^ ^   • 

void analyzebox (short int hmx, short int hy, short int hmy, 
short inthz, short int hmz, 
short int dim 1, short int dim2, short int dim3){ 

if (diml<=hmx && dim2<=hmy && dim3<=hmz){ 
if (dim2<=hy) { 

if (hy-dim2<bfy) { 
boxx=diml; boxy=dim2; boxz=dim3; 
bfx=hmx-diml; bfy=hy-dim2; bfz=abs(hz-dim3); boxi=x; 

} 
else if (hy-dim2==bfy && hmx-diml<bfx) { 

boxx=diml; boxy=dim2; boxz=dim3; 
bfx=hmx-diml; bfy=hy-dim2; bfz=abs(hz-dim3); boxi=x; 

} 
else if (hy-dim2==bfy && hmx-diml= 

bfx && abs(hz-dim3)<bfz) { 
boxx=diml; boxy=dim2; boxz=dim3; 
bfx=hmx-diml; bfy=hy-dim2; bfz=abs(hz-dim3); boxi=x; 

} 
} 
else { 

if (dim2-hy<bbfy) { 
bboxx=diml; bboxy=dim2; bboxz=dim3; 
bbfx=hmx-diml; bbfy=dim2-hy; 
bbfz=abs(hz-dim3); bboxi=x; 

} 
else if (dim2-hy==bbfy && hmx-diml<bbfx) { 

bboxx=diml; bboxy=dim2; bboxz=dim3; 
bbfx=hmx-diml; bbfy=dim2-hy; 
bbfz=abs(hz-dini3); bboxi=x; 

} 
else if (dim2-hy==bbfy && 

hmx-diml=bbfk && abs(hz-dim3)<bbfz) { 
bboxx=diml; bboxy=dim2; bboxz=dim3; 
bbfx=hmx-diml; bbfy=dim2-hy; 
bbfz=abs(hz-dim3); bboxi=x; 

} 
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/  t-Hr -H- -tr -H- -ilr ^t- *1# «1# *1* ^U tb d* ^ *^ ^ ^ ^ *^ ^ *fr ^ ^* ^ ^ ^k ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ "^ ^k ^ *t ^ *t ^ ^ ^ ^t ^k ^ ?fc ?fc ^ ifc 5fc Sfe df ?fe / /*p *^ *p *p ^ ^ *J* T* »^ *p ^ ^ ^ ^ ^ ^ ^ ^ ^ *p ^ ^ ^ ^ ^ ^ ^ *P ^ ^ V ^ V V ^ ^ V ^ ^ *P ^ *^ T* * * T* ^^ * * * T* * * * ^ ^ 

// FINDS THE FIRST TO BE PACKED GAP IN THE LAYER EDGE 
//******************************************************** 

void findsmallestz(void) { 
scrapmemb=scrapfirst; 
smallestz=scrapmemb; 
while (! ((* scrapmemb) .pos=NULL)) { 

if((*((*scrapmemb).pos)).cumz<(*smallestz).cumz) 
smallestz=(*scrapmemb).pos; 

scrapmemb=(*scrapmemb).pos; 

} 
return; 

} 

//************************************************************ 

// AFTER FINDING EACH BOX, THE CANDIDATE BOXES AND THE 
// CONDITION OF THE LAYER ARE EXAMINED 
//************************************************************ 

void checkfound(void){ 
evened=0; 
if (boxi) { 

cboxi=boxi;cboxx=boxx;cboxy=boxy;cboxz=boxz; 

} 
else { 

if ((bboxi>0) & (layerinlayer || (!(*smallestz).pre & !(*smallestz).pos))){ 
if (Ilayerinlayer) { 

prelayer=layerthickness; 
lilz=(* smallestz). cumz; 

} 
cboxi=bboxi;cboxx=bboxx;cboxy=bboxy;cboxz:=bboxz; 
layerinlayer=layerinlayer+bboxy-layerthickness; 
layerthickness=bboxy; 

} 
else { 

if (!(*smallestz).pre & !(*smallestz).pos) layerdone=l; 
else { 

evened=l; 
if (!(*smallestz).pre) { 

trash=(*smallestz).pos; 
(*smallestz).cumx=(*((*smallestz).pos)).cumx; 
(*smallestz).cumz=(*((*smallestz).pos)).cumz; 
(*smallestz).pos=(*((*smallestz).pos)).pos; 
if ((*smallestz).pos) 
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} 
} 
return; 

} 

(*((*smallestz).pos)).pre=smallestz; 
free(trash); 

} 
else if (!(*smallestz).pos){ 

(*((*smallestz).pre)).pos=NULL; 
(*((*smallestz).pre)).cumx=(*smallestz).cumx; 
free(smallestz); 

} 
else { 

if((*((*smallestz).pre)).cumz== 
(*((*smallestz).pos)).cumz) { 

(*((*smallestz).pre)).pos= 
(*((*smallestz).pos)).pos; 

if ((*((*smallestz).pos)).pos) 
(*((*((*smallestz).pos)).pos)).pre= 

(*smallestz).pre; 
(*((*smallestz).pre)).cumx= 

(*((*smallestz).pos)).cumx; 
free((*smallestz).pos); 
free(smallestz); 

} 
else { 

(*((*smallestz).pre)).pos=(*smallestz).pos; 
(*((*smallestz).pos)).pre=(*smallestz).pre; 
if ((*((*smallestz).pre)).cumz< 

(*((*smallestz).pos)).cumz) 
(*((*smallestz).pre)).cumx= 

(*smallestz).c\anx; 
free(smallestz); 
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// AFTER PACKING OF EACH BOX, 100% PACKING CONDITION IS CHECKED 

void volumecheck (void) { 
boxlist[cboxi].packst=l; 
boxlist[cboxi] .packx=cboxx;boxlist[cboxi] .packy=cboxy; 
boxlist[cboxi] .packz=cboxz; 
packedvolume=packedvolume+boxlist[cboxi].vol; 
packednumbox++; 
if (packingbest) { 

graphunpackedout(); 
outputboxlist(); 

} 
else if (packedvolume==totalvolume || packedvolume=totalboxvol) { 

packing=0; 
hundredpercent=l; 

} 
return; 

} 

// DATA FOR THE VISUALIZATION PROGRAM IS WRITTEN TO THE 
// "VISUDAT" FILE AND THE LIST OF UNPACKED BOXES IS 
// MERGED TO THE END OF THE REPORT FILE 

void graphunpackedout(void) { 
charn[5]; 
if (! unpacked)! 

itoa( boxlist[cboxi].cox, strcox, 10); itoa( boxlist[cboxi].coy, strcoy, 10); 
itoa( boxlist[cboxi].coz, strcoz, 10); 
itoa( boxlist[cboxi].packx, strpackx, 10); 
itoa( boxlist[cboxi].packy, strpacky, 10); 
itoa( boxlist[cboxi].packz, strpackz, 10); 

} 
else { 

itoa( cboxi, n, 10); itoa( boxlist[cboxi].diml, strpackx, 10); 
itoa( boxlist[cboxi].dim2, strpacky, 10); 
itoa( boxlist[cboxi].dim3, strpackz, 10); 

} 
if (lunpacked) fprintf(gfp,"%5s%5s%5s%5s%5s%5s\n", 

strcox,strcoy,strcoz,strpackx,strpacky,strpackz); 
elsefprintf(ofp,"%5s%5s%5s%5s\n",n,strpackx,strpacky,strpackz); 
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//* ******************************************************************** 

// TRANSFORMS THE FOUND COORDINATE SYSTEM TO THE ONE ENTERED 
// BY THE USER AND WRITES THEM TO THE REPORT FILE 
//********************************************************************* 

void outputboxlist(void){ 
char strx[5], strpackst[5], strdiml[5], strdim2[5], strdim3[5], strcox[5], strcoy[5], 

strcoz[5], strpackx[5], strpacky[5], strpackz[5]; 
short int x, y, z, bx, by, bz; 
switch(bestvariant) { 

case 1: 
x=boxlist[cboxi].cox; y=boxlist[cboxi].coy; z=boxlist[cboxi].coz; 
bx=boxlist[cboxi] .packx; by=boxlist[cboxi] .packy; 
bz=boxlist[cboxi] .packz; 
break; 

case 2: 
x=boxlist[cboxi].coz; y=boxlist[cboxi].coy; z=boxlist[cboxi].cox; 
bx=boxlist[cboxi] .packz; by=boxlist[cboxi] .packy; 
bz=boxlist[cboxi] .packx; 
break; 

case 3: 
x=boxlist[cboxi].coy; y=boxlist[cboxi].coz; z=boxlist[cboxi].cox; 
bx=boxlist[cboxi] .packy; by=boxlist[cboxi] .packz; 
bz=boxlist[cboxi] .packx; 
break; 

case 4: 
x=boxlist[cboxi] .coy; y=boxlist[cboxi] .cox; z=boxlist[cboxi] .coz; 
bx=boxlist[cboxi] .packy; by=boxlist[cboxi] .packx; 
bz=boxlist[cboxi] .packz; 
break; 

case 5: 
x=boxlist[cboxi] .cox; y=boxlist[cboxi] .coz; z=boxlist[cboxi] .coy; 
bx=boxlist[cboxi] .packx; by=boxlist[cboxi] .packz; 
bz=boxlist[cboxi] .packy; 
break; 

case 6: 
x=boxlist[cboxi] .coz; y=boxlist[cboxi] .cox; z=boxlist[cboxi] .coy; 
bx=boxlist[cboxi] .packz; by=boxlist[cboxi] .packx; 
bz=boxlist[cboxi] .packy; 
break; 

} 
itoa( cboxi, strx,10); 
itoa( boxlist[cboxi].packst, strpackst, 10); 
itoa(boxlist[cboxi].diml, strdiml, 10); 
itoa( boxlist[cboxi].dim2, strdim2,10) 
itoa( boxlist[cboxi].dim3, strdim3,10) 
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itoa(x, strcox, 10); 
itoa(y, strcoy, 10); 
itoa(z, strcoz, 10); 
itoa(bx, strpackx, 10); 
itoa(by, strpacky, 10); 
itoa(bz, strpackz, 10); 
boxlist[cboxi]. cox=x; boxlist[cboxi]. coy=y; boxlist[cboxi] .coz=z; 
boxlist[cboxi] .packx=bx; boxlist[cboxi] .packy=by; boxlist[cboxi] .packz=bz; 
Q)rintf(oQ),"%5s%5s%9s%9s%9s%9s%9s%9s%9s%9s%9s\n",strx,strpackst, 

strdiml,strdim2,strdim3,strcox,strcoy,strcoz,strpackx,strpacky,strpackz); 
return; 

//******************************************************************* 

II USING THE PARAMETERS FOUND, PACKS THE BEST SOLUTION FOUND 
// AND REPORS TO THE CONSOLE AND TO A TEXT FILE 
//******************************************************************* 

void report(void){ 
quit=0; 
switch(bestvariant) { 

case 1: 
px=xx; py=yy; pz=zz; 
break; 

case 2: 
px=zz; py=yy; pz=xx; 
break; 

case 3: 
px=zz; py=xx; pz=yy; 
break; 

case 4: 
px=yy; py=xx; pz=zz; 
break; 

case 5: 
px=xx; py=zz; pz=yy; 
break; 

case 6: 
px=yy; py=zz; pz=xx; 
break; 

} 
packingbest=l; 
if ((gfp=fopen(graphout,"w"))=NULL) { 

printf("Cannot open file %s", filename); 
exit(l); 

} 
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itoa(px, strpx, 10); 
itoa(py, strpy, 10); 
itoa(pz, strpz, 10); 
§)rintf(gQ),"%5s%5s%5s\n",strpx,strpy,strpz); 
strcat(filename," .out"); 
if ((ofp=fopen(filename,"w"))=NULL) { 

printf("Cannot open file %s", filename); 
exit(l); 

} 
percentagepackedbox=bestvolume* 100/totalboxvol; 
percentageused^bestvolume* 100/totalvolume; 
elapsedtime = difftime( finish, start); 
fprintf(ofp," *** REPORT ***\n\n"); 
fprintf(ofp," ELAPSED TIME : 

Almost %.0f sec\n", elapsedtime); 
fprintf(ofp," TOTAL NUMBER OF ITERATIONS DONE : %d\n", 

itenum); 
fprintf(ofp," BEST SOLUTION FOUND AT : 

ITERATION: %d OF VARIANT: %d\n", bestite, bestvariant); 
fprintf(ofp," TOTAL NUMBER OF BOXES : %d\n", tbn); 
fprintf(ofp," PACKED NUMBER OF BOXES : 

%d\n", bestpackednum); 
fprintf(ofp," TOTAL VOLUME OF ALL BOXES : %.0f\n", 

totalboxvol); 
fprintf(ofp," PALLET VOLUME : %.0f\n", 

totalvolume); 
fprintf(ofp," BEST SOLUTION'S VOLUME UTILIZATION : 

%.0f OUT OF %.0f\n", bestvolume, totalvolume); 
fprintf(ofp," PERCENTAGE OF PALLET VOLUME USED : 

%.6f %%\n", percentageused); 
fprintf(ofp," PERCENTAGE OF PACKED BOXES (VOLUME)   : %.6f %%\n", 

percentagepackedbox); 
fprintf(ofp," WHILE PALLET ORIENTATION : 

X=%d;  Y=%d;  Z= %d\n", px, py, pz); 
fprintf(ofp,"  

 \n"); 
fprintf(ofp," NO: PACKSTA DIMEN-1 DMEN-2 DIMEN-3   COOR-X 

COOR-Y  COOR-Z  PACKEDX PACKEDY PACKEDZ\n"); 
fprintf(ofp,"  

 \n»); 
listcanditlayers(); 
layers[0] .layereval=-1; 
qsort(layers,layerlistlen+l,sizeof(structlayerlist),complayerlist); 
packedvolume=0.0; 
packedy=0; 
packing=l; 
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layerthickness=layers[bestite].layerdim; 
remainpy=py; remainpz=pz; 
for (x=l; x<=tbn; x++) boxlist[x].packst=0; 
do{ 

layerinlayer^O; 
layerdone=0; 
packlayer(); 
packedy=packedy+layerthickness; 
remainpy=py-packedy; 
if(layerinlayer){ 

prepackedy=packedy; 
preremainpy=remainpy; 
remainpy=layerthickness-prelayer; 
packedy=packedy-layerthickness+prelayer; 
remainpz=lilz; 
layerthickness=layerinlayer; 
layerdone=0; 
packlayer(); 
packedy=prepackedy; 
remainpy=preremainpy; 
remainpz=pz; 

} 
if (! quit) findlayer(remainpy); 

} 
while (packing & !quit); 
fprintf(ofp,"\n\n *** LIST OF UNPACKED BOXES ***\n"); 
unpacked=l; 
for (cboxi=l; cboxi<=tbn; cboxi++) if (!boxlist[cboxi].packst) 

graphunpackedoutO; 
unpacked=0; 
fclose(ofp); 
fclose(gfp); 
printf("\n"); 
for (n=l; n<=tbn; n++) 

if (boxlist[n].packst) printf("%d %d %d %d %d %d %d %d %d %d\n",n, 
boxlist[n].diml,boxlist[n].dim2,boxlist[n].dim3,boxlist[n].cox, 
boxlist[n] .coy,boxlist[n] .coz,boxlist[n] .packx,boxlist[n]. 

packy,boxlist[n] .packz); 
printf(" ELAPSED TIME : Almost %.0f sec\n", 

elapsedtime); 
printf(" TOTAL NUMBER OF ITERATIONS DONE : %d\n", itenum); 
printfC BEST SOLUTION FOUND AT : 

ITERATION: %d OF VARIANT: %d\n", bestite, bestvariant); 
printf(" TOTAL NUMBER OF BOXES : %d\n", tbn); 
printf(" PACKED NUMBER OF BOXES : %d\n", 

bestpackednum); 
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printf(" TOTAL VOLUME OF ALL BOXES : %.0f\n", 
totalboxvol); 

printf(" PALLET VOLUME : %.0f\n", totalvolume); 
printf(" BEST SOLUTION'S VOLUME UTILIZATION    : %.0f OUT OF 

%.0f\n", bestvolume, totalvolume); 
printfC PERCENTAGE OF PALLET VOLUME USED     : %.6f %%\n", 

percentageused); 
printf(" PERCENTAGE OF PACKED BOXES (VOLUME) : %.6f %%\n", 

percentagepackedbox); 
printf(" WHILE PALLET ORIENTATION : 

X=%d;  Y=%d;  Z= %d\n\n\n", px, py, pz); 
printf(" TO VISUALIZE THIS SOLUTION, PLEASE RUN 'VISUAL.EXEV); 
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Appendix C - The C Program Code of the Visualizer 

// INCLUDED HEADER FILES 

#include <stdio.h> 
#include <stdlib.h> 
#include <stdarg.h> 
#include <graphics.h> 

/*        Function prototypes */ 

void Initialize(void); 
void Pack(void); 
void PutBox(void); 
void SayGoodbye(void); 
void Pause(void); 
void MainWindow(char *header); 
void StatusLine(char *msg); 
void DrawBorder(void); 
void changetextstyle(int font, int direction, int charsize); 
int gprintf(int *xloc, int *yloc, char *fint,...); 

// VARIABLE, CONSTANT AND STRUCTURE DECLARATIONS 

int   GraphDriver; /* The Graphics device driver */ 
int   GraphMode; /* The Graphics mode value */ 
double AspectRatio; /* Aspect ratio of a pixel on the screen*/ 
int   MaxX, MaxY; /* The maximum resolution of the screen */ 
int   MaxColors; /* The maximum # of colors available */ 
int   ErrorCode; /* Reports any graphics errors */ 
struct palettetype palette; /* Used to read palette info    */ 
struct dataarray {int ex, cy, cz, pax, pay, paz; } data[2000]; 
int px, py, pz, cox, coy, coz, packx, packy, packz, a, b, index, currenty, q; 
double max, sc; 
char strpx[8], strpy[8], strpz[8], oldstrcoy[8], strcox[8], strcoy[8], strcoz[8], strpackx[8], 

strpacky[8], strpackz[8]; 
FILE *igf; 
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/*        BEGIN MAIN FUNCTION     */ 

int main() 
{ 
Initialize(); 
Pack(); 
SayGoodbye(); 
closegraph(); 
return(O); 

} 

/* Set system into Graphics mode     */ 

/* Give user the closing screen 
/* Return the system to text mode 

*/ 
*/ 

/*        INITIALIZE: INITIALIZES THE GRAPHICS SYSTEM AND     */ 
/* REPORTS ANY ERRORS WHICH OCCURED. */ 

void Initialize(void) 
{ 
int xasp, yasp; /* Used to read the aspect ratio*/ 
GraphDriver = DETECT; /* Request auto-detection       */ 
initgraph( &GraphDriver, &GraphMode,""); 
ErrorCode = graphresult(); /* Read result of initialization*/ 
if( ErrorCode != grOk) { /* Error occured during init   */ 
printf(" Graphics System Error: %s\n", grapherrormsg( ErrorCode)); 
exit( 1); 

Y 
/* Read the palette from board */ 
/* Read maximum number of colors*/ 

/* Read size of screen */ 
/* read the hardware aspect    */ 

getpalette( &palette); 
MaxColors = getmaxcolor() + 1; 
MaxX = getmaxx(); 
MaxY = getmaxyO; 
getaspectratio( &xasp, &yasp); 
AspectRatio = (double)xasp / (double)yasp; /* Get correction factor        */ 

} 
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/*        PACK: READS THE DATA FROM "VISUDAT" FILE AND ARRANGES */ 
/* BOXES TO PACK FROM FAR END TO THE CLOSE */ 

void Pack(void) 
{ 
struct viewporttype vp; 
charbuffer[10]; 

MainWindow( "PACKING OF THE BEST SOLUTION FOUND" ); 
if ((igf=fopen("visudat","r"))=NULL) { 

outtextxy(0,0, "CANNOT OPEN FILE visudat"); 
exit(l); 

} 
fscanf(igf,"%s %s %s",strpx, strpy, strpz); 
px=atoi(strpx); py=atoi(strpy); pz=atoi(strpz); 
max=px; 
if (py>max) max=py; 
if (pz>max) max=pz; 
sc=120/max; 
getviewsettings( &vp); 
settextjustify( CENTER_TEXT, TOP_TEXT ); 
changetextstyle( TRIPLEX_FONT, HORIZ_DIR, 4); 
changetextstyle( DEFAULT_FONT, HORIZ_DIR, 1); 
setviewport( vp.left+50, vp.top+40, vp.right-50, vp.bottom-10,1); 
getviewsettings( &vp ); 
settextjustify( CENTER_TEXT, CENTER_TEXT); 
outtextxy( 20, 0, "PRESS 'Q' TO QUIT" ); 
setcolor(3); 
outtextxy( 220, 0, "PALLET ORIENTATION (X Y Z) : " ); 
outtextxy( 350, 0, strpx); 
outtextxy( 390, 0, strpy); 
outtextxy( 430, 0, strpz); 
setfillstyle( EMPTY_FILL, 1); 
bar3d( 10, 350-sc*2*py, 10+sc*2*px, 350, sc*pz, 1); 
outtextxy(460, 30, "COORDINATES:"); 
outtextxy(460,40, "CX:   CY:   CZ:"); 
outtextxy(460, 70, "DIMENSIONS:"); 
outtextxy(460,80, "DX:   DY:   DZ:"); 
index=l; 
fscanf (igf,"%s %s %s %s %s %s", strcox, strcoy, strcoz, strpackx, strpacky, strpackz); 
cox=atoi(strcox); coy=atoi(strcoy); coz=atoi(strcoz); 
packx=atoi(strpackx); packy=atoi(strpacky); packz=atoi(strpackz); 
data[index].cx=cox; datafindexj.cy^coy; data[index].cz=coz; 
data[index].pax=packx; data[index].pay=packy; data[index].paz=packz; 
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index++; currenty=data[index].cy; 
while (fscanf (igf,"%s %s %s %s %s %s", strcox, strcoy, strcoz, strpackx, strpacky, 

strpackz)!=EOF){ 
cox=atoi(strcox); coy=atoi(strcoy); coz=atoi(strcoz); 
packx=atoi(strpackx); packy=atoi(strpacky); packz=atoi(strpackz); 
data[index].cx=cox; data[index].cy=coy; data[index].cz=coz; 
data[index].pax=packx; data[index].pay=packy; data[index].paz=packz; 

if (data[index]. cy! =currenty) { 
b=index; index--; 
PutBox(); 

} 
index++; 
if (q==l) return; 

} 
index--; 
PutBox(); 
fclose(igf); 
Pause(); /* Pause for user's response   */ 

} 
/********** PUTBOX: DRAW BOXES IN THEIR LOCATIONS **********/ 
void PutBox(void) 
{ 

for (a=index; a>0; a~){ 
setcolor(O); ^^^^^^^^^__^^^_^^—1^^^___^^^_1__ 

50, "■■"); 
90, "||"); 

setcolor(random(15)+l); 
itoa(data[a].pax, strpackx, 10); outtextxy(410, 90, strpackx); 
itoa(data[a].pay, strpacky, 10); outtextxy(460, 90, strpacky); 
itoa(data[a].paz, strpackz, 10); outtextxy(508, 90, strpackz); 
itoa(data[a].cx, strcox, 10); outtextxy(410,50, strcox); 
itoa(data[a].cy, strcoy, 10); outtextxy(460, 50, strcoy); 
itoa(data[a].cz, strcoz, 10); outtextxy(508, 50, strcoz); 
bar3d( 10+sc*2*data[a].cx+sc*data[a].cz, 

350-sc*2*data[a].cy-sc*.74*data[a].cz-sc*2*data[a].pay, 
10+sc*2*data[a].cx+sc*data[a].cz+sc*2*data[a].pax, 
350-sc*2*data[a].cy-sc*.74*data[a].cz, sc*data[a].paz, 1); 

if (toupper(getch())=,Q'){ q=l; break;} 
} 
data[ 1 ] .cx=data[b] .ex; data[ 1 ] .cy=data[b] .cy; 
data[ 1 ]. cz=data[b]. cz; data[ 1 ] .pax=data[b] .pax; 
data[ 1 ] .pay=data[b] .pay; data[ 1 ] .paz=data[b] .paz; 
index=l; 
currenty=data[index] .cy; 

} 
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/*        SAYGOODBYE: GIVE A CLOSING SCREEN     */ 
/* TO THE USER BEFORE LEAVING. */ 

void SayGoodbye(void) 
{ 
struct viewporttype viewinfo; 
int h, w; 

/* Structure to read viewport */ 

MainWindow( "== The End =="); 
getviewsettings( &viewinfo); /* Read viewport settings      */ 
changetextstyle( TRIPLEX_FONT, HORIZJDIR, 4); 
settextjustify( CENTER_TEXT, CENTERJTEXT ); 
h = viewinfo.bottom - viewinfo.top; 
w = viewinfo.right - viewinfo.left; 
outtextxy( w/2, h/2, "That's all, folks!"); 
StatusLine( "Press any key to EXIT"); 
getch(); 
cleardevice(); /* Clear the graphics screen   */ 

} 

/*        PAUSE: PAUSE UNTIL THE USER ENTERS A KEYSTROKE.        */ 

void Pause(void) 
{ 
static char msg[] = "Esc aborts or press a key..."; 
intc; 

StatusLine( msg); 
c=getch(); 
if(0 = c){ 

c = getch(); 
} 
cleardevice(); 

} 

/* Put msg at bottom of screen 
/* Read a character from kbd */ 

/* Did use hit a non-ASCII key? */ 
/* Read scan code for keyboard        */ 

/* Clear the screen */ 

*/ 
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/*        MAINWINDOW: ESTABLISH THE MAIN WINDOW     */ 

void MainWindow( char *header) 
{ 
int height; 
cleardevice(); /* Clear graphics screen        */ 
setcolor( MaxColors -1); /* Set current color to white   */ 
setviewport( 0, 0, MaxX, MaxY, 1); /* Open port to foil screen     */ 
height = textheight( "H"); /* Get basic text height       */ 
changetextstyle( DEFAULT_FONT, HORIZ.DIR, 1); 
settextjustify( CENTER TEXT, TOP_TEXT ); 
outtextxy( MaxX/2,2, header); 
setviewport( 0, height+4, MaxX, MaxY-(height+4), 1); 
DrawBorderO; 
setviewport( 1, height+5, MaxX-1, MaxY-(height+5), 1); 

} 

/*        STATUSLINE: DISPLAY A STATUS LINE   */ 
/* AT THE BOTTOM OF THE SCREEN.        */ 

void StatusLine( char *msg) 
{ 
int height; 
setviewport( 0,0, MaxX, MaxY, 1); /* Open port to foil screen     */ 
setcolor( MaxColors -1); /* Set current color to white   */ 
changetextstyle( DEFAULT.FONT, HORIZ_DIR, 1); 
settextjustify( CENTER_TEXT, TOP_TEXT ); 
setlinestyle( SOLID_LINE, 0, NORM_WIDTH ); 
setfillstyle( EMPTY_FILL, 0 ); 
height = textheight( "H"); /* Detemine current height     */ 
bar( 0, MaxY-(height+4), MaxX, MaxY); 
rectangle( 0, MaxY-(height+4), MaxX, MaxY); 
outtextxy( MaxX/2, MaxY-(height+2), msg); 
setviewport( 1, height+5, MaxX-1, MaxY-(height+5), 1); 

} 
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/*        DRAWBORDER: DRAW A SOLID SINGLE LINE    */ 
/* AROUND THE CURRENT VIEWPORT.        */ 

void DrawBorder(void) 
{ 
struct viewporttype vp; 
setcolor( MaxColors -1); /* Set current color to white   */ 
setlinestyle( SOLID_LINE, 0,NORM.WIDTH); 
getviewsettings( &vp); 
rectangle( 0, 0, vp.right-vp.left, vp.bottom-vp.top); 

} 

/*     CHANGETEXTSTYLE: SIMILAR TO SETTEXTSTYLE, BUT CHECKS FOR */ 
/*        ERRORS THAT MIGHT OCCUR WHIL LOADING THE FONT FILE. */ 
/###**####**#********#********##******#******« 

void changetextstyle(int font, int direction, int charsize) 
{ 
int ErrorCode; 
gfaphresultO; /* clear error code */ 
settextstyle(font, direction, charsize); 
ErrorCode = graphresult(); /* check result */ 
if( ErrorCode != grOk) { /* if error occured */ 

closegraph(); 
printf(" Graphics System Error: %s\n", grapherrormsg( ErrorCode)); 
exit( 1 ); 

} 
} 
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/*    GPRINTF: USED LIKE PRINTF EXCEPT THE OUTPUT IS SENT TO THE   */ 
/*        SCREEN IN GRAPHICS MODE AT THE SPECIFIED CO-ORDINATE.    */ 
/*********************************************************************/ 

int gprintf( int *xloc, int *yloc, char *fmt,...) 
{ 
va_list argptr; /* Argument list pointer        */ 
char str[ 140]; /* Buffer to build sting into    */ 
int cnt; /* Result of SPRINTF for return */ 
va_start( argptr, format); /* Initialize va_ functions      */ 
cnt = vsprintf( str, fmt, argptr);       /* prints string to buffer */ 
outtextxy( *xloc, *yloc, str); /* Send string in graphics mode */ 
*yloc += textheight( "H") + 2;      /* Advance to next line        */ 
va_end( argptr); /* Close va_ functions */ 
return( cnt); /* Return the conversion count */ 

} 
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Appendix D - The Test Problems That We Generated 

Randomly Generated Sets: 

SET#1 SET #2 SET #3 
104, 96, 84 104, 96, 84 104,96, 84 
1.3,5,7,51 1.3,5,7,200 1.3,5,7,200 
2. 20,4, 6, 90 2.9,11,2,290 2.9,11,2,29 
3.11,21,16,80 3.14, 6, 8, 300 3.14, 6, 8,30 
4.51,2,60,80 4.1,4,19,748 4.1,4,19,51 
5. 6,17, 8, 6 5.10,13,21,190 5.10,13,21,12 

6. 27,23, 34, 5 
7.12, 9,13,10 
8. 24,15,19, 50 
9.5,16,9,100 
10. 10, 20, 5,100 
11.9,18,15,50 

SET #4 SET #5 (Worst Case) 
104, 96, 84 
1.1,2,3,200 
2. 2,4, 5, 200 
3.6,7,1,200 
4. 6, 8, 2, 29 
5.11,2,3,29 
6. 9, 4, 2, 29 
7. 14, 5, 3, 30 
8. 10, 4, 6, 30 
9.11,8,3,30 
10.1,2,19,50 
11.8,13,11,50 
12.1,3,21,10 
13. 8, 9, 10, 30 
14.7,13,31,115 
15. 12,66,3,30 
16.4,15,19,90 
17. 5,16, 9,100 
18.10,2,5,100 
19. 10,10,1, 90 
20. 9,18,15, 50 
21.6,9,14,1 

104 96 84 
1.1,2,3,1 
2. 4, 5,6,1 
3. 7, 8,9,1 
4.10,11,12,1   . 
5. 13,14,15,1 
6. 16,17,18,1 
7.19,20,21,1 
8. 22,23, 24,1 
9. 25,26, 27,1 
10.28,29, 30,1 
11.31,32,33,1 
12.34,35,36,1 
13.37,38,39,1 
14.40,41,42,1 
15.43,44,45,1 
16.46,47,48,1 
17.2,3,4,1 
18.5,6,7,1 
19.8,9,10,1 
20.11,12,13,1 
21.14,15,16,1 
22.17,18,19,1 
23.20,21,22,1 
24. 23,24,25,1 
25.26 27 28 1 
26.29 30 31 1 
27. 32 33 34 1 
28. 35 36 37 1 
29. 38 39 40 1 
30.41 42 43 1 
31.4445 46 1 

D-l 



Sets Generated by Dividing Into: 

Distributor's Pallet Packing Problem Samples: 

SET #6 SET #7 SET #8 
104, 96, 84 104,96,84 104, 96, 84 
1.70,104,24,4 1.70,50,24,4 1.70,45,24,4 
2. 14, 104, 48, 2 2. 70, 54,24,4 2. 70, 59,24,4 

3.14,104,48,2 3.14,40,48,2 
4.14, 64,48,2 

SET #9 SET #10 SET #11 
104, 96, 84 104, 96, 84 104, 96, 84 
1.70,45,24,4 1.28,32,18,9 1.19,20,42,2 
2. 70, 30,24,4 2.24,21,35,16 2. 25,20, 30,1 
3. 70, 29, 24, 4 3. 19, 26, 20, 4 3.25,20,25,1 
4. 14,40, 48, 2 4.19,26,16,16 4. 25, 20, 29,1 
5. 14, 32, 48, 2 5.16,26,20,4 5.8,20,21,4 
6. 14, 32, 48,2 6. 20, 20, 26,1 6. 36,46, 84,1 

7. 16,14, 25, 36 7. 16, 46,10,2 
8. 16,46,32,2 
9. 20, 30,15, 1 
10. 20, 30, 69,1 
11.20,30,21,4 
12. 12, 30, 7,12 
13. 52, 60, 42, 2 
14.26,36,21,4 
15.26,36,84,1 

Manufacturer's Pallet Packing Problem Samples: 

SET #12 SET #13 SET #14 
104 96 84 
1.14,13,8,576 

104 96 84 
1.14,13,4,1152 

104 96 84 
1.4,6,7,4992 

SET #15 SET #16 
104 96 84 
1.14,13,2,576 
2. 21,13,4, 576 

104 96 84 
1.4,6,7,2496 
2.14,13, 8,288 
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Appendix E - Solutions of B/R Test Sets 

BOX SET BR #1:      3 DIFFERENT BOX TYPES 

SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 
1 112 104 88.47 89.52 1 
2 138 131 87.21 88.21 1 
3 127 117 89.27 89.64 0 
4 197 186 91.13 91.29 2 
5 136 127 90.87 91.34 1 
6 147 116 87.01 87.16 1 
7 126 84 86.46 86.63 1 
8 180 170 92.95 93.18 1 
9 101 92 87.32 88.03 0 
10 130 121 92.06 92.45 1 
11 102 93 89.58 90.66 0 
12 104 91 91.37 91.64 1 
13 284 276 94.01 94.15 4 
14 132 118 90.54 91.77 1 
15 119 98 83.62 83.75 0 
16 159 143 85.73 85.90 1 
17 213 198 91.82 92.35 2 
18 82 70 88.93 90.32 0 
19 130 102 88.83 88.91 0 
20 88 78 87.43 87.62 0 
21 79 73 90.44 90.67 0 
22 116 101 88.52 89.05 0 
23 128 114 95.29 95.60 0 
24 114 102 88.14 88.60 1 
25 139 128 91.19 91.23 0 
26 124 110 88.84 89.24 0 
27 103 79 83.73 84.36 1 
28 111 100 82.52 83.15 1 
29 109 100 88.34 88.59 0 
30 405 354 91.51 91.67 10 
31 129 116 90.23 90.35 1 
32 155 148 95.21 95.35 1 
33 282 261 92.16 92.62 3 
34 160 146 89.32 90.19 2 
35 150 137 90.15 90.42 0 
36 172 163 87.71 88.62 1 
37 99 87 89.34 89.76 1 
38 93 81 87.58 87.77 0 

E-l 



SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

39 243 229 91.87 92.16 2 

40 107 98 89.93 90.33 0 

41 109 91 87.69 87.81 0 

42 168 152 90.43 90.47 1 

43 141 135 90.94 91.60 1 

44 142 121 83.97 84.35 0 

45 140 133 90.48 90.71 0 

46 116 89 89.16 90.21 1 

47 137 126 91.86 92.63 0 

48 153 141 90.76 90.86 1 

49 86 78 83.96 84.44 1 

50 168 161 90.04 90.54 1 

51 129 113 91.05 91.25 0 

52 187 174 90.06 90.08 1 

53 170 152 90.57 90.67 1 

54 142 125 84.96 84.96 0 

55 114 104 87.46 88.07 0 

-      56 408 389 93.51 93.76 8 

57 124 114 91.31 91.76 0 

58 92 87 92.85 92.91 0 

59 195 179 90.31 90.33 2 

60 105 90 90.76 90.90 0 

61 101 93 86.52 87.89 0 

62 120 106 86.54 86.87 1 

63 94 79 78.90 79.08 0 

64 139 111 88.43 88.45 1 

65 476 437 94.39 94.39 12 

66 145 132 89.37 89.82 0 

67 221 194 86.98 87.31 3 

68 238 216 89.66 89.73 3 

69 144 125 82.80 83.57 1 

70 163 148 87.26 87.77 1 

71 96 84 86.17 86.46 0 

72 74 63 86.15 86.51 0 

73 127 115 90.12 90.49 0 

74 132 110 86.06 86.66 0 

-      75 137 128 92.24 92.46 1 

76 269 248 91.49 91.80 4 

77 194 178 93.36 93.55 2 

78 169 153 87.86 87.92 1 

79 200 179 84.90 85.07 1 

80 133 121 90.05 90.09 0 

81 73 65 88.15 88.92 0 

E-2 



SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 
82 164 147 90.33 90.80 2 
83 120 103 86.19 86.82 0 
84 69 60 88.03 88.10 0 
85 319 307 94.99 95.09 5 
86 156 126 87.28 87.99 0 
87 98 91 85.51 85.56 1 
88 126 110 85.06 85.12 0 
89 96 87 87.98 88.50 1 
90 90 83 89.84 90.45 0 
91 238 214 90.68 90.94 1 
92 88 73 88.63 88.75 0 
93 100 90 86.60 86.70 0 
94 133 123 86.45 87.32 1 

95 139 124 89.89 90.81 0 
96 182 165 88.87 89.01 1 
97 140 123 87.46 87.80 1 

98 122 109 89.98 89.99 1 
99 154 144 86.32 86.34 0 

100 214 200 91.22 91.61 2 

BOX SET BR #2:      5 DIFFERENT BOX TYPES 

SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 
1 81 73 90.70 91.78 0 
2 114 106 88.66 88.73 0 
3 166 149 87.74 88.42 2 
4 201 181 90.71 91.67 3 
5 117 100 88.22 88.47 0 
6 142 127 87.01 87.10 1 
7 166 148 86.88 88.27 2 
8 122 109 89.88 89.99 1 

9 118 96 87.78 87.80 1 
10 174 166 87.51 88.37 2 
11 94 82 89.16 89.45 1 
12 86 69 87.05 87.27 0 
13 228 191 91.89 92.20 4 
14 95 82 92.25 92.64 0 
15 127 110 87.04 87.26 2 

16 163 136 86.49 87.32 2 
17 112 106 84.89 85.15 1 

18 98 81 89.91 90.27 0 

E-3 



SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

19 143 106 87.56 87.99 2 

20 120 93 89.52 89.58 1 

21 84 73 88.45 88.79 1 

22 100 88 86.50 88.35 1 

23 120 108 87.38 88.63 1 

24 93 76 85.08 86.42 0 

25 152 136 90.23 90.53 2 

26 169 156 90.79 91.54 1 

27 114 89 85.75 86.07 1 

28 122 114 87.51 87.80 1 

29 156 145 85.95 86.08 2 

30 196 191 92.23 92.70 1 

31 142 126 88.42 88.47 1 

32 142 125 89.49 89.72 2 

33 116 110 90.31 92.01 1 

34 156 139 89.23 89.47 2 

35 147 139 93.98 94.47 2 

36 104 95 88.88 88.92 1 

37 105 88 89.16 90.24 1 

38 116 107 87.70 88.14 1 

39 266 246 93.82 93.91 5 

40 96 78 87.80 88.81 0 

41 98 94 91.71 93.54 1 

42 158 133 89.75 89.77 1 

43 102 91 89.70 90.22 0 
44 129 114 87.22 87.81 1 

45 161 139 90.19 90.99 2 

46 101 89 91.78 92.39 0 
47 160 149 90.41 90.56 1 

48 139 117 88.35 88.85 1 

49 94 85 88.87 89.88 1 

50 155 146 89.70 89.90 2 

51 152 139 91.39 92.08 1 

52 101 83 88.92 89.00 0 

53 141 129 89.67 89.69 1 

54 141 120 89.39 89.49 1 

55 117 101 85.17 85.72 1 

56 181 172 92.70 92.72 2 
57 159 136 89.44 89.92 1 

58 114 110 91.51 92.38 1 

59 201 184 91.85 92.25 3 

60 113 99 88.86 89.23 1 

61 83 65 84.98 85.64 0 

E-4 



SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

62 109 92 88.49 88.58 1 

63 120 110 90.01 91.26 1 

64 122 112 85.88 86.54 1 

65 187 174 88.35 89.49 2 

66 133 115 91.15 92.40 1 

67 184 160 87.95 88.30 2 

68 130 117 87.16 88.15 1 

69 146 135 89.75 89.82 1 

70 123 108 87.45 87.57 1 

71 122 111 87.24 87.79 1 

72 88 67 88.03 88.05 0 

73 132 117 88.12 88.36 2 

74 124 108 86.34 86.41 1 

75 163 149 88.78 89.17 1 

76 188 173 91.58 91.97 2 

77 202 183 92.24 92.62 3 

78 191 170 88.25 88.41 3 

79 206 187 91.52 91.70 3 

80 116 98 87.99 88.32 1 

81 86 75 88.45 89.36 1 

82 149 132 89.31 89.93 1 

83 136 122 88.77 89.41 1 

84 85 73 87.22 87.42 0 

85 209 201 91.78 92.06 2 

86 160 131 90.70 90.95 1 

87 102 88 86.81 87.43 1 

88 140 119 87.32 87.73 1 

89 100 85 84.84 84.95 0 

90 82 68 87.33 87.85 0 

91 166 158 89.23 89.38 1 

92 81 66 87.20 87.66 0 

93 85 73 89.41 89.42 1 

94 168 138 91.45 91.51 1 

95 149 136 90.27 90.68 1 

96 202 190 89.98 90.05 2 

97 165 147 87.87 88.04 2 

98 138 119 92.43 92.89 2 

99 174 159 89.49 89.62 2 

100 139 131 89.15 89.68 1 

E-5 



BOX SET BR #3:      8 DIFFERENT BOX TYPES 

SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

1 94 86 88.59 88.88 1 

2 115 105 88.00 88.19 1 

3 143 117 86.78 86.80 3 

4 185 159 86.67 87.02 4 

5 113 93 88.61 88.76 1 

6 143 125 87.48 87.86 2 

7 144 128 86.56 86.88 2 

8 104 85 88.68 89.96 1 

9 133 118 87.65 87.74 2 

10 180 161 87.06 87.97 5 

11 119 103 90.61 91.14 2 

12 103 90 85.21 85.54 1 

13 199 187 88.84 89.25 4 

"     14 104 94 90.78 90.90 1 

15 103 85 87.56 87.82 1 

16 128 117 89.03 89.70 1 

17 86 80 84.51 85.09 0 

18 85 78 88.03 88.83 0 

19 176 157 89.38 89.67 2 

20 135 107 90.69 91.04 2 

21 94 80 88.66 88.87 1 

22 111 101 88.76 88.88 1 

23 130 121 87.39 88.31 1 

24 112 96 88.69 89.10 1 

25 135 111 88.59 89.16 2 

26 161 146 88.81 89.10 2 

27 120 105 87.34 87.36 1 

28 143 122 86.01 86.34 2 

29 194 173 88.18 88.51 3 

30 161 144 88.67 88.73 1 

31 136 119 87.63 88.15 3 

32 141 127 88.44 89.18 2 

33 131 121 90.08 90.34 2 

34 164 149 89.20 89.91 4 

35 149 136 90.22 90.55 2 

36 111 101 86.99 87.43 1 

37 112 100 89.79 90.38 1 

38 103 94 86.67 87.30 1 

39 232 217 89.72 90.30 5 

40 86 73 86.56 87.31 0 
41 124 107 90.25 91.27 1 

E-6 



SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

42 131 117 89.80 90.77 2 

43 92 82 86.83 88.02 0 

44 142 117 85.65 85.98 3 

45 147 129 89.50 90.35 2 

46 110 97 89.25 89.49 2 

47 148 133 86.55 86.96 2 

48 103 95 87.96 88.95 1 

49 105 96 88.90 89.39 1 

50 136 115 88.98 89.09 2 

51 165 143 91.06 91.44 3 

52 143 128 89.68 90.18 1 

53 100 85 87.80 88.21 1 

54 178 169 90.70 91.14 3 

55 154 143 86.68 86.79 3 

-     56 212 196 89.38 90.29 4 

57 118 107 87.80 87.87 1 

58 87 80 88.21 88.66 0 

59 216 194 87.33 87.43 5 

60 114 92 87.23 87.66 1 

61 90 76 88.61 89.15 1 

62 114 103 85.16 85.34 1 

63 124 113 89.15 90.31 2 

64 134 123 87.09 87.11 2 

65 140 130 89.48 90.37 2 

"    66 97 89 87.66 88.19 1 

67 169 148 87.96 88.09 3 

68 119 103 89.59 90.86 1 

69 162 144 90.42 90.92 3 

70 108 100 87.71 87.91 2 

71 131 117 86.76 86.92 2 

72 138 125 89.54 90.17 2 

73 105 94 85.35 85.71 1 

74 114 104 88.71 89.15 1 

75 139 130 87.46 88.40 2 

76 144 127 88.92 89.97 1 

77 201 182 91.70 91.74 4 

78 155 140 88.81 89.00 3 

79 195 179 90.86 90.94 3 
80 114 97 88.63 89.30 2 

81 80 73 88.92 89.38 1 

82 174 160 87.92 88.45 3 

83 140 122 90.25 90.41 2 

84 101 95 92.14 92.48 1 

E-7 



- 

SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

85 146 140 89.55 89.67 1 

86 155 125 89.57 90.07 2 

87 126 113 88.32 88.88 1 

88 167 143 88.11 88.44 3 

89 90 80 86.87 87.17 1 

90 84 72 86.27 86.38 1 

91 183 166 91.01 91.63 4 

92 97 82 89.84 91.20 1 

93 84 73 85.62 86.35 0 

94 154 145 88.21 88.47 2 

95 178 160 89.46 89.60 3 

96 197 177 91.27 91.35 4 

97 166 154 87.66 87.86 2 

98 125 104 90.77 90.78 1 

99 110 98 86.82 88.09 1 

100 137 128 88.74 88.82 2 

BOX SET BR #4:      10 DIFFERENT BOX TYPES 

SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

1 106 94 88.54 90.72 1 

2 123 109 87.32 88.26 1 

3 135 118 87.42 87.58 3 

4 169 145 88.52 88.71 3 

5 130 118 89.26 89.74 1 

6 132 112 87.04 87.46 3 

7 138 116 88.42 88.77 2 

8 107 94 89.36 89.50 1 

9 149 133 87.93 88.65 2 

10 133 114 86.85 87.87 3 
11 126 114 90.14 90.77 2 

12 114 101 88.13 88.34 1 

13 169 150 87.18 87.47 4 

14 105 98 89.80 90.40 1 

15 100 86 89.64 90.04 1 

16 138 116 88.02 88.29 3 
17 91 83 88.38 89.67 1 

18 75 63 87.18 88.90 1 

19 138 128 87.15 88.11 2 

20 139 121 89.58 89.68 2 

21 114 98 86.72 87.14 1 

E- 8 



SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

22 111 104 89.10 89.26 2 

23 98 72 87.22 89.55 1 

24 137 116 85.11 85.15 3 

25 133 122 88.07 88.45 1 

26 158 143 89.00 89.09 2 

27 119 111 87.45 88.51 1 

28 175 161 86.72 86.83 3 

29 127 113 86.62 86.85 1 

30 151 132 88.26 88.40 3 

31 145 129 88.62 88.70 3 

32 156 139 87.20 87.72 3 

33 132 105 89.26 89.46 1 

34 136 124 89.80 90.16 3 

35 151 131 89.26 89.72 3 

36 131 113 89.60 89.73 2 

37 136 122 88.94 90.01 2 

38 115 98 86.25 86.56 2 

39 225 208 90.11 90.17 6 

40 102 82 84.38 84.58 1 

41 113 89 89.49 89.75 1 

42 121 100 87.62 87.78 2 

43 90 68 86.23 86.52 1 

44 138 114 85.87 86.05 4 

45 158 141 88.62 88.63 3 

46 98 87 89.88 90.00 1 

47 138 122 86.40 86.81 2 

48 109 96 88.32 89.19 1 

49 106 91 89.00 90.43 1 

50 167 152 88.95 89.55 4 

51 184 166 91.87 92.23 5 

52 143 124 89.23 89.39 2 

53 101 78 87.20 87.71 1 

54 172 155 90.02 90.41 4 

55 143 125 85.69 85.92 3 

56 233 213 91.04 92.02 6 
57 96 85 87.53 88.23 1 

58 106 95 90.05 90.37 1 

59 199 168 88.85 88.87 6 

60 125 113 87.15 87.36 2 

61 121 105 89.14 89.76 1 

62 125 118 88.22 88.67 2 

63 100 82 90.46 90.56 1 

-    64 118 106 86.36 86.97 1 

E-9 



- 

SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

65 156 148 90.52 90.59 3 

66 105 92 87.00 87.08 1 

67 170 154 87.84 88.42 4 

68 103 87 85.00 85.49 2 

69 157 146 89.10 89.24 3 

70 117 104 86.29 86.65 2 

71 138 122 86.05 86.17 3 

72 129 114 86.47 86.59 2 

73 117 103 86.26 86.69 1 

74 91 72 86.70 87.72 1 

75 148 125 88.50 88.62 2 

76 118 108 89.96 90.72 1 

77 179 150 88.58 89.55 4 

78 164 149 90.49 90.84 3 

79 217 198 90.72 91.05 5 

80 132 121 87.43 87.75 2 

81 104 96 88.51 88.68 1 

82 153 143 88.71 89.89 3 

83 128 113 88.84 88.89 2 

84 125 104 90.68 91.66 2 

85 123 115 86.03 86.34 1 

86 152 138 87.40 87.70 3 

87 108 94 85.45 87.08 2 

88 178 154 87.13 87.38 4 

89 93 82 86.33 87.11 1 

90 95 88 87.15 88.44 1 

91 134 122 90.69 90.82 2 

92 93 77 89.02 90.19 1 

93 78 73 88.35 89.45 1 

94 141 125 87.68 87.82 3 

95 181 167 87.24 87.90 4 

96 149 131 88.01 88.82 2 

.     97 142 132 87.22 87.78 2 

98 116 103 89.69 90.27 2 

99 134 123 88.99 89.52 2 

100 144 132 90.06 90.88 3 

- 

E- 10 



BOX SET BR #5:      12 DIFFERENT BOX TYPES 

SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 
1 98 84 88.24 89.41 1 
2 138 131 86.82 88.05 3 
3 133 118 87.59 87.65 4 
4 142 130 86.52 86.55 3 
5 129 118 88.68 89.39 2 
6 140 125 87.51 87.99 3 
7 132 117 87.83 88.14 3 
8 98 91 88.84 89.62 2 
9 135 121 86.74 87.13 2 
10 133 113 87.19 87.34 3 
11 144 131 89.53 89.57 3 
12 109 92 86.16 86.43 2 
13 199 179 88.15 88.70 7 
14 123 115 87.74 88.76 2 
15 104 92 84.67 86.17 2 
16 118 106 85.31 86.05 2 
17 108 100 88.87 89.37 2 
18 87 76 88.20 88.48 1 
19 142 132 88.26 89.24 2 
20 138 124 88.24 89.21 3 

-    21 128 120 89.36 89.54 3 
22 116 94 87.69 87.71 2 
23 143 124 87.91 89.25 3 
24 111 97 86.37 86.86 2 
25 143 123 85.88 86.59 3 
26 161 147 89.79 89.82 3 
27 120 110 86.39 87.09 1 
28 180 161 87.44 87.59 4 
29 120 104 87.51 89.61 2 
30 135 120 88.29 89.42 3 
31 147 127 88.07 88.51 3 
32 163 150 87.62 87.75 4 
33 141 133 88.52 88.79 2 
34 115 99 88.19 88.48 2 
35 143 130 88.71 89.12 3 
36 124 113 87.72 87.95 2 
37 122 109 89.90 91.01 2 
38 118 108 84.80 85.72 2 
39 196 174 88.58 88.86 7 

.     40 106 93 85.87 86.14 2 
41 133 114 87.70 88.07 2 

E-ll 



SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

42 113 94 87.78 88.33 2 

43 113 102 86.79 88.26 2 

44 136 118 86.25 86.50 3 

45 171 153 88.85 89.53 5 

46 99 89 88.48 89.18 2 

47 146 125 86.38 86.74 3 

48 111 99 87.63 88.08 2 

49 104 95 86.22 87.13 1 

50 172 152 88.22 88.39 5 

51 195 170 88.94 89.12 6 

52 139 117 88.77 89.07 3 

53 122 110 86.03 86.66 2 

54 183 158 89.79 89.87 5 

55 136 124 86.31 86.53 3 

56 218 206 88.14 88.15 8 

57 104 78 86.52 87.14 1 

58 115 105 88.76 90.05 2 

59 154 142 88.70 89.05 3 

60 127 115 85.43 85.90 2 

61 106 93 88.86 90.31 1 

62 131 122 87.01 88.47 3 

^    63 105 98 89.20 89.87 2 

64 115 103 89.23 90.44 2 

65 160 136 89.24 89.43 4 

66 108 99 84.66 85.57 2 

67 141 120 86.74 87.12 3 

68 103 97 89.19 90.40 1 

69 158 140 86.42 86.69 5 

70 109 98 87.31 87.79 3 
71 141 127 84.26 84.36 4 

72 135 122 87.26 87.34 3 

73 127 116 85.37 86.06 2 

74 101 91 87.28 87.50 2 

75 116 108 88.34 89.72 2 

76 113 93 89.66 90.05 1 

77 171 154 89.26 89.43 5 

78 163 148 87.60 88.27 4 

79 190 178 88.69 88.88 5 
80 143 122 86.03 86.42 3 

81 101 86 87.00 87.18 1 
82 135 123 87.80 88.20 2 

83 127 108 89.18 89.54 2 

84 138 129 88.83 89.51 3 

E-12 



SET# 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

TOTAL 
NUMBER 
BOXES 

126 
126 
113 
171 
93 
99 
138 
116 
84 
130 
186 
155 
137 
133 
135 
135 

PACKED 
NUMBER OF 

BOXES 
112 
115 
89 
153 
73 
90 
126 
101 
75 
124 
175 
141 
119 
125 
128 
122 

% PALLET 
VOLUME 

UTILIZATION 
86.57 
89.36 
87.06 
87.80 
87.15 
87.08 
87.54 
87.35 
84.01 
88.81 
86.99 
87.27 
86.97 
88.47 
89.93 
87.65 

% PACKED 
VOLUME OF 
ALL BOXES 

86.80 
90.52 
87.47 
87.83 
87.52 
87.21 
87.91 
88.97 
84.97 
89.51 
87.22 
87.56 
87.89 
88.86 
91.33 
87.99 

SOLUTION 
TIME 

(SECOND) 

BOX SET BR #6:      15 DIFFERENT BOX TYPES 

SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 
1 129 116 87.35 87.58 3 
2 149 136 87.90 88.04 4 
3 138 119 86.92 87.15 4 
4 144 128 87.05 87.27 4 
5 145 128 88.51 90.17 3 
6 138 123 86.54 86.80 4 
7 123 113 89.00 90.03 2 
8 104 94 88.14 90.03 2 
9 124 110 85.78 86.24 3 
10 144 127 85.39 85.98 4 
11 131 122 86.68 86.87 2 
12 122 105 86.21 86.39 3 
13 203 186 88.44 89.32 9 
14 143 135 88.64 88.69 4 
15 95 82 86.53 87.04 1 
16 122 107 86.71 87.57 3 
17 121 102 87.14 87.71 3 

.     18 88 75 87.09 87.12 2 
19 132 118 87.64 87.86 3 
20 140 119 89.83 90.11 4 

E-13 



SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

21 129 114 86.99 88.64 3 

22 131 123 88.92 89.56 3 

23 116 111 88.29 90.17 3 

24 105 89 85.60 86.20 2 

25 138 121 84.60 84.87 4 

26 165 149 87.55 87.64 5 

27 128 117 87.40 87.51 3 

28 152 134 87.08 87.53 4 

29 138 130 87.23 87.46 3 

30 135 123 88.93 89.22 4 

31 159 142 88.49 88.68 6 

32 143 132 87.34 87.37 4 

33 141 122 90.52 90.95 4 

34 113 94 87.58 89.27 3 

35 152 131 89.10 89.81 5 

36 113 103 87.89 88.11 2 

37 106 94 88.20 89.08 2 

38 131 116 86.00 86.34 3 

39 183 168 88.92 89.25 7 

40 102 89 86.24 86.71 3 

41 131 109 88.57 88.66 3 

42 125 113 87.09 87.26 3 

43 108 98 86.07 86.28 3 

44 140 121 87.21 87.55 4 

45 157 137 87.41 88.11 5 

46 111 98 89.08 89.63 2 

47 147 130 85.89 85.96 5 

48 110 98 88.82 89.20 2 

49 108 102 89.43 91.03 2 

-     50 145 136 88.49 88.51 4 

51 175 154 88.47 88.85 6 

52 140 130 86.01 86.20 4 

53 128 97 87.61 88.29 3 

54 165 155 88.05 88.14 5 

55 144 126 85.36 85.63 4 

56 153 138 87.96 88.36 4 

57 111 104 86.64 86.68 3 

58 116 109 89.35 89.58 2 

59 126 105 85.81 86.65 3 

60 132 117 86.91 87.14 3 

61 110 96 87.11 87.34 2 

62 123 110 86.50 86.79 3 
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SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

63 114 103 88.08 88.13 3 

64 125 110 85.78 87.06 2 

65 156 132 91.31 91.42 4 

66 116 101 86.95 87.44 4 

67 150 136 87.82 88.17 5 

68 103 91 86.68 88.02 2 

69 167 147 85.83 86.65 7 

70 106 87 86.78 86.90 2 

71 137 124 88.93 89.06 4 

72 132 122 87.18 87.40 4 

73 114 103 85.90 86.50 2 

74 100 88 86.74 88.17 2 

75 123 104 87.56 87.83 2 

76 122 110 88.46 88.46 3 

77 158 138 86.98 87.21 4 

78 155 143 87.83 88.07 4 

79 168 150 88.53 88.64 4 

80 158 142 86.67 87.29 4 

81 94 79 85.73 86.23 2 

82 139 127 87.19 88.46 3 

83 129 112 87.19 87.91 3 

84 137 116 87.10 87.38 4 

85 128 111 88.17 88.95 3 

86 138 114 87.96 88.06 3 

87 108 99 86.91 87.48 2 

88 171 150 85.73 85.90 7 

89 100 90 86.52 87.62 2 

90 85 77 86.45 86.68 2 

91 123 112 85.88 86.08 3 

92 114 102 88.15 88.30 2 

93 86 74 84.32 85.05 1 

94 138 122 87.32 88.22 3 

95 155 143 87.49 87.54 5 

96 131 112 90.31 90.35 2 

97 141 124 88.49 89.34 4 

98 147 129 88.06 88.32 5 

99 120 114 89.87 90.26 2 

100 139 126 86.02 86.66 4 
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BOX SET BR #7:     20 DIFFERENT BOX TYPES 

" SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

1 110 97 86.13 88.00 3 

2 129 117 86.10 87.42 4 

3 126 109 86.89 87.06 5 

4 153 138 86.72 86.72 5 

5 126 116 86.61 86.93 4 

6 156 135 88.36 88.65 7 

7 109 94 86.73 86.97 3 

8 119 105 87.69 87.81 4 

9 129 116 86.25 86.82 4 

10 135 119 87.14 87.27 5 

11 143 126 87.95 88.21 5 

12 146 133 86.73 86.80 6 

13 172 158 87.75 88.64 9 

14 119 111 88.19 88.41 3 

15 117 106 85.50 85.52 4 

16 118 106 88.16 88.31 3 

17 125 113 85.88 87.09 4 

18 103 91 87.04 87.26 3 

19 135 121 88.20 89.36 5 

20 130 116 88.98 89.32 4 

21 133 126 88.33 89.50 5 

22 130 124 87.39 87.69 4 

23 157 135 86.07 86.63 7 

24 105 95 87.27 87.66 2 

25 130 113 85.04 85.71 4 

26 151 134 86.04 86.13 6 

27 121 116 87.88 88.24 3 

28 144 134 88.24 89.17 5 

29 117 105 85.90 86.24 3 

30 143 127 86.88 87.09 6 

31 161 144 87.02 87.22 8 

32 149 133 88.14 88.53 7 

33 142 120 89.04 89.41 5 

34 106 98 86.51 87.32 3 

35 162 139 88.05 88.10 6 

36 133 123 87.09 88.12 5 

37 99 88 87.51 88.31 3 

38 120 107 86.42 86.73 4 

39 167 143 87.35 88.00 8 

40 119 109 86.98 87.18 3 
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SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

41 127 108 87.78 88.84 4 

42 108 95 87.02 88.00 3 

43 96 84 87.70 89.18 2 

44 156 139 87.02 87.92 6 

45 140 122 85.80 86.79 4 

46 116 102 87.18 88.15 3 

47 150 135 86.97 87.60 6 

48 113 104 88.02 89.18 3 

49 131 119 87.56 88.09 4 

50 149 135 89.17 89.70 5 

51 166 144 88.08 88.25 9 

52 138 116 86.63 86.88 5 

53 122 105 86.59 86.78 3 

54 143 136 87.77 89.25 5 

55 142 123 88.11 88.68 5 

56 162 150 87.77 88.30 7 

57 127 113 86.09 86.48 4 

58 116 108 90.16 91.65 3 

59 129 112 85.83 86.71 4 

60 126 103 86.47 86.56 5 

61 100 85 86.55 88.36 3 

62 126 112 86.68 87.08 4 

63 107 94 87.13 88.18 3 

64 108 89 88.02 88.59 3 

65 168 160 90.03 90.20 7 

66 117 109 84.30 85.05 4 

67 162 149 86.90 86.91 6 

68 105 95 87.77 87.85 3 

.     69 155 134 85.59 85.78 7 

70 111 97 84.91 85.38 4 

71 127 111 87.65 87.93 4 

72 127 114 85.60 86.20 4 

73 121 108 84.87 85.14 4 

74 108 100 87.68 88.29 3 

75 129 116 88.95 89.12 4 

76 105 86 87.37 87.44 3 

77 158 137 86.83 87.30 6 

78 142 129 85.34 86.22 4 

79 166 145 86.20 86.50 6 

80 128 109 86.75 86.82 4 

81 110 92 85.21 85.65 3 

82 131 119 87.87 88.51 4 
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SET# 

TOTAL 
NUMBER 
BOXES 

PACKED 
NUMBER OF 

BOXES 

% PALLET 
VOLUME 

UTILIZATION 

% PACKED 
VOLUME OF 
ALL BOXES 

SOLUTION 
TIME 

(SECOND) 

83 139 118 86.73 87.15 5 

84 154 136 88.10 88.72 6 

85 108 99 86.11 87.93 3 

86 134 109 88.50 90.17 4 

87 117 105 86.14 86.38 3 

88 142 119 86.52 87.81 5 

89 105 94 88.66 88.74 3 

90 97 86 88.11 88.35 3 

91 106 93 85.27 86.05 2 

92 118 109 89.09 89.19 4 

93 90 75 84.49 84.78 3 

94 134 125 87.13 87.52 4 

95 146 124 86.52 87.20 6 

96 151 135 87.68 87.96 6 

97 124 111 86.25 87.10 4 

98 144 127 88.50 88.58 6 

99 145 132 86.52 87.25 6 

100 122 107 86.53 86.79 4 
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