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The aim of the Single Container Loading Problem (SCLP) is to pack three-dimensional boxes into a three-
dimensional container so as to maximize the volume utilization of the container. We propose a new block
building approach that constructs packings by placing one block (of boxes) at a time until no more boxes
can be loaded. The key to obtaining high quality solutions is to select the right block to place into the right
free space cuboid (or residual space) in the container. We propose a new heuristic for evaluating the fit-
ness of residual spaces, and use a tree search to decide the best residual space-block pair at each step. The
resultant algorithm outperforms the best known algorithms based on the 1600 commonly used bench-
mark instances even when given fewer computational resources. We also adapted our approach to
address the full support constraint. The computational results for the full support support variant on
the 1600 instances similarly show a significant improvement over existing techniques even when given
substantially fewer computational resources.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the Single Container Loading Problem (SCLP), the objective is
to orthogonally load a set of three-dimensional cargo boxes (or
simply boxes) into a three-dimensional rectangular container so
as to maximize the volume utilization of the container. The boxes
can be classified into K types with different dimensions. There are
Nk available boxes of each type k (k = 1,2, . . . ,K) and the dimensions
of boxes of type k are given by length lk, width wk, and height hk.
The length, width and height of the container are L, W and H,
respectively. Boxes can only be placed with their faces parallel to
the faces of the container (often known as orthogonal packing in
cutting and packing literature), and any pair of boxes cannot over-
lap. In general, a box can be placed in up to six orientations
depending on how its length, width and height are aligned with
the length, width and height of the container. In practice, the rota-
tion of boxes may be freely allowed, restricted to certain orienta-
tions (e.g., storage of refrigerators that must be upright), or
completely disallowed.

Problem instances may be composed of many types of boxes
(known as strongly heterogeneous instances), which is a common
scenario for courier services; a few types of boxes (weakly hetero-
geneous), such as when batches of goods from a warehouse are sent
ll rights reserved.
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to retailers; or entirely of one type of box (homogeneous), a situa-
tion that is prevalent for goods coming off an assembly line. Under
an improved typology for cutting and packing problems (Wäscher
et al., 2007), the weakly heterogeneous SCLP is classified as a three-
dimensional rectangular single large object placement problem
(3D SLOPP), while the strongly heterogeneous SCLP is classified
as a single knapsack problem (3D SKP).

Due to stability considerations, it is often required that every
box in the packing must be fully supported from below. When this
constraint is imposed, we call the resultant problem variant the
Single Container Loading Problem with Full Support (SCLP-FS). This
study considers the SCLP both with and without the full support
constraint.

Volume utilization is the most common primary objective for
many real-world container loading problems. A denser packing
may result in the use of fewer containers or vehicles, which has
the environmentally beneficial effect of reducing carbon emissions.
Other constraints such as the stability of cargo, multi-drop loads,
weight distribution and ease of retrieval are also often considered
in specific applications (Bischoff and Ratcliff, 1995; Bischoff, 2006;
Ratcliff and Bischoff, 1998; Zhu et al., 2011).

The SCLP is NP-hard in the strict sense (Pisinger, 2002). As
expected, exact algorithms can only solve instances of limited size
(Fekete et al., 2007). For many real world applications, it is
therefore necessary to resort to heuristics, metaheuristics and
incomplete tree search based methods in order to produce good
solutions in reasonable time.
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Existing algorithms for the SCLP can be classified into three (not
necessarily disjoint) classes. Constructive methods generate solu-
tions by repeatedly loading boxes into the container until no fur-
ther boxes can be loaded. Divide-and-conquer methods instead
divide the container into sub-containers, and then recursively
solve the resultant smaller problems before recombining them into
a complete solution; examples include Lins et al. (2002) and Chien
and Wu (1998). Finally, local search methods start with an existing
solution, then repeatedly apply neighbourhood operators to gener-
ate new solutions; examples include Gehring and Bortfeldt (1997)
and Parreño et al. (2010).

The best performing approaches in recent literature (Fanslau
and Bortfeldt, 2010; Parreño et al., 2010, 2008; He and Huang,
2011) share similar algorithm structures and can be classified as
block building approaches. Block building approaches are construc-
tive methods. A block is a subset of boxes that is placed compactly
inside its minimum bounding cuboid. Each step of a block building
approach involves placing a block into some free space in the con-
tainer, and this is repeated until no more blocks can fit into the
container. Other block building approaches include the algorithms
developed by Eley (2002), Bortfeldt et al. (2003), and Mack et al.
(2004). There have also been wall-building approaches (Bortfeldt
and Gehring, 2001; Pisinger, 2002), where a container is filled
using vertical layers (called walls), and layer-building approaches
(Bischoff and Ratcliff, 1995; Terno et al., 2000), where the container
is filled from the bottom up using horizontal layers. Both a wall and
a horizontal layer can be seen as special cases of a block, so these
approaches can also be considered block building approaches.

Zhu et al. (2012) proposed an analytical framework that catego-
rizes the common features of all block building approaches into six
key elements: (K1) how to represent free space in the container;
(K2) how to generate a list of blocks; (K3) how to select a free
space; (K4) how to select a block; (K5) how to place the selected
block into the selected space and update the list of free space;
and (K6) what is the overarching search strategy. Our new ap-
proach is also block building in nature and shares many common
features with existing approaches. For K1, our approach uses the
maximal space representation of free space in the container, which
is a set of cuboids that form a cover of the free space. This maximal
space representation was first proposed by Lim et al. (2003) and
subsequently employed in the maximal space algorithm devised
by Parreño et al. (2008, 2010). For K2, we employ the technique
developed by Fanslau and Bortfeldt (2010) which first combines
boxes of the same type into simple blocks, and then simple blocks
into guillotine blocks; the same technique was also used by Zhu
et al. (2012). For K4–K6, we use the same techniques as Zhu
et al. (2012).

There are three main contributions in this study. Firstly, we pro-
pose a new space evaluation heuristic for K3 that is simpler and
more effective than existing approaches. Secondly, we show that
the proper selection of a free space cuboid (which we call a residual
space) is as important as the proper selection of blocks. All existing
approaches process residual spaces in a fixed order, i.e., the resid-
ual space is selected using a fixed rule in each step of the construc-
tion, which is equivalent to greedily selecting a space according to
some measure (e.g., the largest residual space). In contrast, several
blocks are considered and evaluated in each step of the construc-
tion, usually using a tree search or similar technique. In this sense,
existing approaches have placed a heavier emphasis on selecting
blocks compared to selecting residual spaces. We show in this pa-
per that the role of residual spaces and blocks are largely symmet-
ric in the search; by allocating some portion of the computational
effort to considering various residual spaces at each step with a
corresponding reduction in the effort spent on selecting blocks,
we obtained better solutions with the same total computational
effort. Thirdly, we adapt our new algorithm to handle the SCLP-FS.
The remainder of this paper is organized as follows. In Section 2,
we describe our new block building approach for the SCLP, and
then show how it can be adapted to handle the SCLP-FS in Section
3. The two main novelties in our approach are a new residual space
selection criterion based on Manhattan distance and considering
multiple residual spaces during search; we perform computational
experiments to analyze the effects of both novelties and summa-
rize the results in Section 4. Section 5 presents a comparison be-
tween our approach and the best existing approaches on 1600
commonly used benchmark instances for both the SCLP and
SCLP-FS. We conclude our study in Section 6 with some closing
remarks.
2. Our block building approach for the SCLP

In a typical constructive method, a packing is obtained by load-
ing one box at a time until no boxes can be loaded into the con-
tainer. However, in a block building approach, boxes are first
arranged into blocks, and in each step a block of boxes is loaded in-
stead of a single box.

Our approach is a block building approach. We start with an
empty container and a list of candidate blocks. In the first step,
we select a block and place it at one of the corners of the container.
The remaining free space in the container can be represented as a
list of cuboids, which we call residual spaces. In subsequent steps,
we select one of the residual spaces and one of the available blocks,
and then place the selected block at some corner of the selected
space. Once the block is placed, we update the list of residual
spaces and available blocks. This process is repeated until the list
of residual spaces is empty, whereupon we have produced a com-
plete packing. We use a tree search procedure to generate several
complete packings, and return the best packing found when the
time limit is reached.

In any step of our solution construction process, the state of the
current partial packing can be fully described by:

R: a list of cuboids (residual spaces) representing the free space
in the container.
B: a list of candidate blocks.
PB: a list of placed blocks and their locations.

In this section, we first show how we represent free space as a
list of residual spaces in Section 2.1, and then briefly describe how
boxes are combined into blocks in Section 2.2. We then explain in
Section 2.3 how we perform a d-step Lookahead tree search that
produces several complete packings and returns the best one. Sec-
tion 2.4 describes how we evaluate the desirability of a placement
(i.e., a block, a residual space, and a corner in that space), which is
used in our tree search. Finally, our overall approach is outlined in
Section 2.5.
2.1. Maximal space representation of free space

We use the maximal space concept to represent the free space in
the container. When a single block is placed at a corner of the con-
tainer, the remaining free space can be represented by three over-
lapping cuboids, where each cuboid is largest rectangular box that
is interior-disjoint with the placed block; such a cuboid is called a
residual space. Fig. 1 shows the resultant residual spaces from
placing such a block; since the three cuboids overlap, they are illus-
trated in three separate diagrams (as semi-transparent cuboids) for
clarity of presentation.

Due to the overlapping nature of the maximal space representa-
tion, when a block is placed at some corner of a residual space, it
may overlap with other residual spaces. After a block is placed,



Fig. 1. Three residual spaces that form a cover of the free space.
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these overlapped residual spaces must be updated. Fig. 2 illustrates
a general case, where a placed block b overlaps with a residual
space r. In this case, the remaining free space in r can be repre-
sented using the maximal space concept, and the resultant residual
spaces can be computed as follows. For each plane that corre-
sponds to a face of the block b, if the plane intersects with r, then
it will divide r into two parts, where one part overlaps with b and
the other part passes through a residual space. In Fig. 2, the plane
corresponding to the right face of b produces the residual space r0.
Therefore, for any residual space that overlaps with a placed block
b, its remaining free space can be represented by up to six residual
spaces corresponding to the six faces of b.

2.2. Block generation

There are two types of blocks that have been employed in exist-
ing research. A simple block (Fig. 3a) consists of only one type of
box, where all boxes are placed in the same orientation. In contrast,
a guillotine block (Fig. 3b) may consist of multiple types of boxes
and/or boxes that are placed in different orientations. A guillotine
block is recursively defined: (1) all simple blocks are guillotine
blocks and (2) two guillotine blocks that are combined along the
length, width or height direction (of the container) is a guillotine
block.

It has been observed by Zhu et al. (2012) that using both simple
and guillotine blocks is more effective for strongly heterogeneous
problem instances, whereas using only simple blocks is better for
weakly heterogeneous problem instances. We use the average
number of boxes per box type ht ¼

P
kNk=K , as an indicator of

the heterogeneity of a problem instance. When the average num-
ber of boxes per box type is greater than 6, we consider the prob-
lem instance weakly heterogeneous, otherwise we consider it
strongly heterogeneous.

We employ procedures very similar to those used by Zhu et al.
(2012) to generate simple blocks and guillotine blocks. A simple
block can be seen as a box replicated nl, nw, and nh times along
the length, width and height directions of the container. Hence,
simple blocks for a particular box can be generated by enumerating
all possible nl, nw, and nh. Initially all guillotine blocks are simple
blocks, we then iterative combing two guillotine blocks along
length, width and height direction to form larger guillotine blocks.
Fig. 2. A placed block b overlaps with residual space r.
The exact procedures for generating simple block and guillotine
blocks are described in Appendices A and B in the online
supplements.

For the purpose of finding a solution to the SCLP (without the
full support constraint), it is clear that two blocks with the same
dimensions that consist of the same set of boxes are equivalent,
even if the internal configurations (i.e., relative locations of the
boxes) are different. For equivalent blocks, we only keep the first
one generated and discard the rest. A block is considered feasible
only if it can fit into the container and it consists of boxes that
are still available for loading, so any block that cannot fit in any
residual space or consists of excessive boxes are discarded.

2.3. Greedy d-step Lookahead tree search

Whenever a block is placed into a residual space, it is always
placed such that one of its corners coincides with one of the cor-
ners of the residual space. Since any block can be potentially placed
at any of the eight corners of a residual space, given a state with jRj
residual spaces and jBj blocks, there are up to 8jRjjBj possible place-
ments. A common strategy to determine the best placement for a
given state is to use a tree search (Zhu et al., 2012). At the root
of the tree, we consider the top m placements according to some
fitness measure, resulting in up to m depth one nodes. For each
node at depth one, we again try the top m placements, resulting
in up to m2 depth two nodes. We expand the tree up to depth d.
For each node at depth d, we use a simple Greedy method to obtain
a complete packing (i.e., we repeatedly perform the best placement
according to the fitness measure until no more blocks can be
loaded). During the tree search, for a given state S, the next state
after performing a placement p is obtained by invoking the func-
tion PLACE(S, p) (described in Appendix D in the online
supplements).

Fig. 4 illustrates a search tree with m = 3, d = 2. The first place-
ment on the path that leads to the best complete packing (i.e.,
the volume of the loaded boxes are maximized) is considered to
be the best placement for the root node. In Fig. 4, since placement
p2 leads to best complete solution, so p2 is the best placement for
state S. We call such a tree search d-step Lookahead.

The tree search described above essentially looks d steps ahead
in order to decide the best placement for a given state. We denote
(a) Simple block (b) Guillotine block

Fig. 3. Classes of blocks.



Fig. 4. Two-step Lookahead.
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this tree search by the notation LA(S, d, m, Rank), where LA stands
for ‘‘Lookahead’’, S is the current state, d is the maximum depth of
the tree search, m is the maximum number of subtrees explored at
each node of the tree search (also called the branching factor), and
Rank is a function that ranks all possible placements for the current
state S. More precisely, the function Rank (S, m) returns up to m
placements out of all possible placements for state S. The tree
search procedure LA(S, d, m, Rank) returns a pair (p, CS), where p
is the best placement for the current state S, and CS is the best com-
plete solution found during the tree search.

Using the above tree search, we designed a Greedy algorithm
called Greedy–Lookahead (Algorithm 1). Starting from the initial
state S corresponding to the input SCLP instance, we invoke the
tree search procedure LA to find the best placement p. We then
move to the next state by performing the selected placement using
the function PLACE(S, p), which describe in Appendix D in the online
supplements for completeness. We repeat the above process until
there are no residual spaces remaining. We record the best solution
found using variable BestSol; since each invocation of the tree
search procedure LA also returns a complete solution CS (line 6),
we update the best known solution BestSol if CS is superior.

Algorithm 1. Greedy d-Step Lookahead tree search algorithm.
Greedy–Lookahead(B, d, m, Rank)

// B: a list of blocks

// d: maximum depth of the tree search

// m: maximum branching factor of the tree search

// Rank: a function that ranks all placements of a state
1
 BestSol = NULL

2
 Create an initial state S, where
S.R consists of a single free space corresponding to the
entire container
S.B consists of all feasible blocks from the list B

3

B8
while S.R is not empty

B7
4
 (p, CS) = LA(S, d, m, Rank)
5
 PLACE(S, p)

B5 6BBBBBAAAAA7A7A77A7A88A88A8A8A8
6
 update BestSolif CS is a better solution
AAA555A5 AAAAA6A6666A66A6666666A6A6
7
 Update BestSol if S is a better solution

8
 return BestSol
BB444B44444B AAAA3A3AAAAAAAA3A3A33AA44AAAA44AAA44AAAAAAAA4A444A4AAAA
B1 B2

B3BBBBB
AAA1A AAA2A22

Fig. 5. Corner distances between a residual space and the container.
2.4. Ranking placements

We now describe our placement ranking function, which selects
up to m placements out of all possible placements of the state
S. Given two integers m1 and m2 such that m1 �m2 6m, the func-
tion selects up to m1 residual spaces from S.R. For each selected
residual space r, up to m2 blocks that ‘‘fit best’’ into r are chosen,
resulting in up to m placements.

We consider two schemes for deciding m1 and m2. One simple
scheme is to always set m1 = 1 and m2 = m; this is the scheme used
by Fanslau and Bortfeldt (2010), which we call the Single-
Best-Space scheme. An alternative scheme is to set both m1 and
m2 to about

ffiffiffiffiffi
m
p

for the root node of a search tree (at depth zero),
and for all other nodes in the search tree we set m1 = 1 and m2 = m;
we call this the Multi-Best-Space scheme (given in Algorithm 2).

Algorithm 2. Ranking Placements of a State using Multi-
Best-Space Scheme.
Rank-Placement-Multi-Space(S, m)

// S: a state represent a partial packing

// m: the maximum number of placements to be

returned

1
 if S corresponds to the root node

ffiffiffiffiffip
2
 m1 ¼maxfb mc;1g

3
 else m1 = 1

4
 m2 = max{bm/m1c, 1}

5
 PlacementList = NULL

6
 SpaceList = select the best m1 residual spaces in S.R

7
 for each residual space r in SpaceList

8
 for the m2 blocks b in S.B that fit best into space r

9
 Add placement (r, b, c) to PlacementList
10
 return PlacementList
It is well known that packing boxes from the corners of the con-
tainer towards the center tends to lead to better utilization of
space, since free space is then collated at the center and tends to
be continuous (Parreño et al., 2008; Wu, 2002). Hence, when
selecting residual spaces, we prefer to select residual spaces at a
corner. Our residual space selection strategy closely resembles that
of Zhu et al. (2012) and Parreño et al. (2008) except for two as-
pects: (1) we may select more than one residual space and (2)
we use Manhattan distance instead of corner distance.

A residual space r has eight corners, and each corner has a cor-
responding corner of the container. Fig. 5 illustrates eight pairs of
corresponding corners: (A1, B1), (A2, B2), . . . , (A8, B8). For each pair
of corners, we compute the Manhattan distance, i.e., if (x1, y1, z1)
are the coordinates of A1 and (x2, y2, z2) are the coordinates of B1,
the Manhattan distance is jx1 � x2j + jy1 � y2j + jz1 � z2j. We call
the corner of r with the minimum Manhattan distance the anchor
corner, and the distance between the anchor corner and its corre-
sponding corner of the container is the anchor distance; in Fig. 5,
A2 is the anchor corner. When selecting residual spaces, we prefer
the space with the smallest anchor distance, with ties broken by
greater volume. If there is still a tie, we prefer the space with smal-
ler lexicographical order of (y1, z1, y2, z2, x1, x2), where (x1, y1, z1) are
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the coordinates of the corner closest to the origin, and (x2, y2, z2)
correspond to the corner farthest from the origin (the container
is assumed to be placed with length, width and height aligned with
X-, Y-, and Z-axes, respectively).

For each selected residual space, we select up to m2 blocks from
S.B using exactly the same strategy as Zhu et al. (2012). The fitness
of a block b with respect to a given residual space r is defined as f(r,
b) = V + a � (Vloss + Vwaste), where V is the total volume of the boxes
in the block, Vloss is the wasted space volume after the block b is
placed into r, Vwaste is the wasted block volume in block b (i.e., the
volume of the block minus the total volume of boxes in the block),
and a is a coefficient that controls the relative weight of V and
(Vloss + Vwaste). Following the suggestion made by Zhu et al.
(2012), we set a = �1.

The value of Vloss is computed as follows. Recall that after a
block is placed at a corner of a residual space r, the remaining space
in r is represented by at most three cuboids (Fig. 1). Given such a
cuboid and the set of available boxes, the maximum usable space
on each axis must be a linear combination of the dimensions of
the boxes. If the magnitude of a dimension of a cuboid is not a valid
linear combination of box dimensions, we can ‘‘trim’’ it to the larg-
est linear combination. To compute the largest linear combination
subject to the availability of boxes is equivalent to solving a knap-
sack problem; we make use of the standard knapsack problem
algorithm using dynamic programming (DP) that runs in pseudo-
polynomial time (Martello and Toth, 1990) for this purpose. We
compute Vloss as the total amount of wasted space trimmed from
the three cuboids as measured by this technique. However, we
do not perform the DP during the Greedy procedure that completes
a partial solution represented by a node at depth d. The details are
explained in Appendix C in the online supplements.

2.5. Overall approach

The parameters d and m in Greedy–Lookahead(B, d, m, Rank)
control the size of the search tree explored by the LA(S, d, m, Rank)
function, which is proportional to w = md. The total computational
effort by Greedy–Lookahead(B, d, m, Rank) is also approximately
proportional to w, although invoking Greedy–Lookahead with a
larger w value may not always take more CPU time because the
number of tree searches carried out is affected by the selected
placements. Hence, our overall approach uses a simple strategy
that starts with computational effort w = 1, and doubles the effort
in subsequent iterations until all allocated CPU time is used.

Algorithm 3. The iterative-doubling Greedy–Lookahead tree
search algorithm.
ID-GLTS(d, Rank)

// d: maximum depth of tree search

// Rank: a function that ranks placements of a state
1
 BestSol = NULL
P

2
 avgBoxPerType ¼ kNk=K
3
 if avgBoxPerType > 6

4
 B = Generate-Simple-Blocks(MaxBlockCount)

5
 else B = Generate-Guillotine-Blocks(MinUtil,

MaxBlockCount)

6
 w = 1

7
 while time limit is not exceeded

ffiffiffiffip
8
 m ¼ b wd c

9
 sol = Greedy–Lookahead(B, d, m, Rank)
10
 update BestSol if sol is a better solution

11
 w = 2 � w

12
 return BestSol
Our resultant Iterative-Doubling Greedy–Lookahead Tree Search
(ID-GLTS) approach is given in Algorithm 3. In our implementation,
we set the Lookahead depth d = 2. Note that early in the algorithm
when the values of w are small, multiple redundant searches using
the same value of m would be performed. To avoid this, our actual
implementation is slightly more complex, which we explain in
Appendix E in the online supplements.

Using the analytic framework proposed by Zhu et al. (2012), the
six key elements for our approach are as follows:

(K1) use the cover representation to represent free space;
(K2) construct simple blocks for weakly heterogeneous problem

instances, and both simple and guillotine blocks for
strongly heterogeneous problem instances

(K3) select the residual space with smallest Manhattan
distance;

(K4) select the block with highest f(r, b) evaluation function
value

(K5) place the block at the anchor corner of the residual space;
(K6) using the Greedy d-step Lookahead search algorithm, dou-

ble search effort in each iteration until the time limit
exceeded.

3. Handling the full support constraint

In order to adapt our approach to handle the SCLP-FS, we only
need to ensure that the following conditions hold throughout the
course of our algorithm:

� FS1: All boxes in blocks are fully supported from below by boxes
or by the base of the block; such blocks are called fully supported
blocks
� FS2: The bases of all residual spaces are fully covered by the top

faces of some placed boxes or the floor of the container; such
spaces are called fully supported residual spaces
� FS3: Blocks are placed only on the base of a fully supported

residual space (i.e., one of the bottom four corners of the space)

When these conditions hold, the placement of a block will not
violate the full support constraint. Since the initial state (the empty
container with no boxes) represents a fully supported packing
plan, so by induction all states reached from the initial state satis-
fying these conditions represents a fully supported packing plan.

3.1. Generating fully supported blocks

A fully supported block (FSB) is a block where all boxes in the
block are fully supported from below by either other boxes or
the base of the block. We associate each FSB with a new attribute
packing area, which is a rectangular region on the top face of the
block that is fully covered by the top faces of boxes in that block.

Clearly, any simple block is an FSB and its packing area is the
entire top face. FSBs are generated by iteratively combining two
FSBs along the length, width or height direction of the container.
We use the same technique as Fanslau and Bortfeldt (2010) to
combine two FSBs to generate a new FSB. Combining two FSBs
along the length or width direction will always result in an FSB
since no overhanging boxes will be introduced. Fig. 6 how two FSBs
can be combined along the length direction.

In our approach, two FSBs b1 and b2 can be combined along the
length (resp. width) direction of the container only if:

(1) the height of the two blocks are the same;
(2) the length (resp. width) of the packing area spans the entire

length (resp. width) of the corresponding block;
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Fig. 6. Combining two fully supported blocks along the length direction.
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Fig. 8. r0 is the residual space corresponding to the top face of block b.
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(3) the resultant block is feasible and has volume utilization no
less than MinUtil.

When two FSBs b1 and b2 with packing areas p1 and p2, respec-
tively, are combined along the length direction, the packing area p
of the resultant block is given by

p:length ¼ p1:lengthþ p2:length ð1Þ
p:width ¼minfp1:width;p2:widthg ð2Þ

When two FSBs are combined along the height direction, we
avoid introducing new overhanging boxes by placing the top block
inside the packing area of the bottom block. Hence, two FSBs can
be combined along the height direction only if the base area of
the top block can contained by the packing area of the bottom
block (Fig. 7). The packing area of the resultant block is the packing
area of the top block.
3.2. Generating fully supported residual spaces

We extend the concept of a residual space to a fully supported
residual space. A fully supported residual space is a residual space
b1

b2
r1

r2
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Fig. 7. Combining two fully supported blocks along the height direction.
where its base area is fully covered by either the floor of the con-
tainer or the top faces of some placed boxes.

Recall that for the SCLP without the full support constraint,
when a placed block b overlaps with a residual space r, the remain-
ing free space in r can be represented by up to six new residual
spaces, each of which corresponds to a face of the placed block.
In the case of SCLP-FS, when a placed FSB overlaps with a fully sup-
ported residual space, the four spaces corresponding to the left,
right, front and back faces of the block are automatically fully sup-
ported (we can easily verify that their base areas are fully sup-
ported). No residual space corresponding to the bottom face of
the block will be generated due to the placement restriction FS3.
Finally, the residual space corresponding to the top face of the
placed block will be fully supported if we use the packing area of
the block as its base. Fig. 8 shows a fully supported block b that
overlaps with a fully supported residual space. The residual space
corresponding to the the top face of block b is r0, the base area of
r0 is exactly the packing area p of block b.

4. Component analysis via computational experiments

There are two main components that differentiate our Iterative-
Doubling Greedy–Lookahead Tree Search (ID-GLTS) approach from
other approaches in literature. Firstly, we use the Manhattan dis-
tance measure to rank residual spaces. Secondly, we may consider
several residual spaces when choosing the best placement; all
existing techniques select a single residual space and only consider
different blocks. We performed a series of experiments to analyze
the effects of these two components in our approach, as well as to
determine appropriate parameter values.

Our experiments were based on the 16 sets of test cases (BR0–
BR15) that are commonly employed by existing SCLP literature.
BR1–BR7 were generated by Bischoff and Ratcliff (1995), while
BR0 and BR8–BR15 were generated by Davies and Bischoff
(1999). Each set consists of 100 instances. The 16 sets of instances
can be broadly classified into three categories: BR0 consists of only
one type of box (homogeneous); BR1–7 consists of a few types of
boxes per instance (weakly heterogeneous); and BR8–BR15 con-
sists of up to 100 types of boxes per instance (strongly heteroge-
neous). All of the test sets also impose a variety of restrictions on
the possible orientations for individual boxes, which may be differ-
ent for different boxes in the same test instance.

For experiments presented in this section, we selected 160 in-
stances (the first ten instances from each set) to form a smaller test
bed. We used this smaller test bed instead of the complete test sets
for two reasons. Firstly, this is a common and successful practice in



Table 1
Manhattan distance vs. corner distance on 160 BR instances (SCLP).

Test set Manhattan Corner Impr

BR0 87.43 87.43 0.00
BR1 94.97 94.95 0.01
BR2 96.17 96.22 �0.05
BR3 96.26 96.11 0.15
BR4 95.97 96.01 �0.04
BR5 95.86 95.88 �0.02
BR6 95.66 95.64 0.02
BR7 95.26 95.24 0.02
BR8 94.88 94.51 0.37
BR9 94.37 94.23 0.14
BR10 94.52 93.99 0.53
BR11 94.09 93.93 0.16
BR12 93.90 93.67 0.23
BR13 93.83 93.66 0.18
BR14 93.68 93.31 0.37
BR15 93.66 93.50 0.15

Avg BR1–7 95.73 95.72 0.01
Avg BR8–15 94.12 93.85 0.27
Avg BR1–15 94.87 94.72 0.15
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the artificial intelligence community where smaller test sets are
used to train an algorithm, and its performance on larger test sets
are used to compare the algorithm with other approaches. This
avoids over-fitting the algorithm for the specific test data (an
over-fitted algorithm may not work well for other data). Secondly,
it allows a broader range of experiments to be conducted since
each experiment takes much less time to complete compared to
using the complete test sets.

All experiments were conducted on a rack mounted server with
Intel Xeon E5520 Quad-Core CPUs clocked at 2.27 GHz with 8G
RAM. The operating system is CentOS linux version 5. The 64-bit
Java Development Kit 1.6.0 from Sun Microsystems was used to
implement the algorithms. Since our algorithm is fully determinis-
tic, we execute our algorithm only once for each problem instance.

The values for the following parameters in our ID-GLTS ap-
proach were fixed as follows:

� ht = 6: for each instance, if the average box count per type is lar-
ger than ht, it is considered weakly heterogeneous; otherwise it
is considered strongly heterogeneous.
� MaxBlockCount = 10,000: the maximum number of blocks

generated.
� MinUtil = 98%: the utilization of a block is defined as the total

volume of the boxes in the block divided by the total volume
of the block; only blocks with utilization not lower than MinUtil
will be generated.
� d = 2: the maximum depth of the search tree in each invocation

of the LA function.
� TimeLimit = 500s: the total time limit in CPU seconds for each

instance.

4.1. Manhattan distance vs. corner distance

The first set of experiments aims to evaluate the effectiveness of
using Manhattan distance to rank residual spaces, compared to the
corner distance measure used by Zhu et al. (2012). We imple-
mented two versions of our approach, one using Manhattan dis-
tance and the other using corner distance; the two versions are
otherwise identical. We chose the Single-Best-Space scheme for
ranking placements.

Table 1 summarizes the results for these two algorithms for the
SCLP. Columns Manhattan and Corner give the average volume uti-
lization of the solutions obtained by the corresponding algorithms
for the 10 instances for each test set, i.e., the total volume of boxes
loaded divided by the volume of the container expressed as a per-
centage. Column Impr is the difference between columns Manhat-
tan and Corner, where a positive value indicates that using
Manhattan distance resulted in better solutions than corner dis-
tance. The last three rows of the table provides an overview of
the algorithms’ performance. Row Avg BR1–7 shows the average
performance for the weakly heterogeneous instances, while row
Avg BR8–15 represents the average performance for the strongly
heterogeneous instances.

We see that for all weakly heterogeneous instances, the differ-
ence in performance between the Manhattan distance and corner
distance measures is small; the average difference is only 0.01%,
and the corner distance measure achieved superior solutions on
average than Manhattan distance for 3 out of 7 test sets (high-
lighted in bold). However, the Manhattan distance measure is
superior for strongly heterogeneous instances. Although the over-
all improvement for strongly heterogeneous instances of 0.27%
may seem small, there are two reasons to prefer using Manhattan
distance: firstly, it is simpler to compute than corner distance; sec-
ondly, heterogeneous instances are well known to be much harder
to solve than weakly heterogeneous instances.
4.2. Single- vs. Multi-Best-Space

The second set of experiments studies the effectiveness of the
Single-Best-Space and Multi-Best-Space strategies for ranking place-
ments. We implemented three versions of our algorithm (all using
Manhattan distance to rank residual spaces): the first uses the Sin-
gle-Best-Space scheme; the second uses the Multi-Best-Space
scheme; while for the third we allocate half the CPU time each
on separate executions of Single-Best-Space and Multi-Best-Space,
and then take the better solution. All other aspects of the three
algorithms are the same.

Our experiments showed that on average, Single-Best-Space is
slightly better for strongly heterogeneous instances, Multi-Best-
Space is slightly better for weakly heterogeneous instances, and
the overall performance of the two algorithms are almost the same.
We also observed that the solutions found by Single-Best-Space and
Multi-Best-Space tend to complement each other for many individ-
ual instances, i.e., for some instances Single-Best-Space found solu-
tions that are much better than Multi-Best-Space, whereas for other
instances the reverse is true. As a result, allocating half of the com-
putational resources to the Single-Best-Space scheme and the other
half to the Mult-Best-Space scheme is more effective than allocat-
ing all resources to either scheme alone. The detailed results can
be found in Appendix F in the online supplements.

We performed another set of experiments to analyze the con-
vergency behavior of the three space selection strategies. For each
instance, we recorded the best solution found by each algorithm
every 10 CPU seconds. We grouped the 15 test sets BR1–15 into
three categories (BR1–5, BR6–10, and BR11–15) ordered by
increasing heterogeneity. Fig. 9 shows the results for these groups
in three separate diagrams. In each diagram, the vertical axis is the
percentage volume utilization of the solutions, and the horizontal
axis is the time taken to produce the solutions in CPU seconds.
The diagrams plot the average of the best solutions for the 50
instances over time. The line with label Single, Multi and better rep-
resents the ID-G2LA, ID-G2LA-MS and ID-G2LA-S+M respectively.

We see in Fig. 9a that the Single-Best-Space scheme found bet-
ter solutions than the Multi-Best-Space scheme for the weakly het-
erogeneous instances BR1–5 up to about 200 s, at which point
Multi-Best-Space became superior. However, the trend is reversed
in Fig. 9b for the BR6–10 instances with middling heterogeneity,
where the early solutions by Multi-Best-Space were better than
Single-Best-Space, but the later solutions were poorer. Finally,
Fig. 9c indicates that Single-Best-Space is better for the strongly
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Fig. 9. Convergency behavior of the different space selection strategies.
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heterogeneous BR11–15 instances up to about 330 s, but Multi-
Best-Space is slightly better thereafter. For all three test sets, allo-
cating half the time to each scheme and then taking the better
solution of the two is superior to using either scheme alone
(although the Single-Best-Space scheme was slightly better for
BR11–15 up to about 110 s).

5. Comparison with other algorithms

We compared ID-GLTS with existing approaches using all 1600
instances of the SCLP benchmark test data BR0–15, which is widely
used to compare SCLP and SCLP-FS algorithm performance in exist-
ing literature. Our ID-GLTS algorithm allocates half the CPU time to
the Single-Best-Space scheme and the other half to Multi-Best-
Space scheme, and simply takes the better solution when the exe-
cution finishes. For the sake of brevity, we only make comparisons
with the most recently published and best algorithms since the
average results on each individual test set for these latest
algorithms dominate those in earlier literature by large margins.
In particular, we only compare with complex search or meta-
heuristic approaches rather than the simple heuristics proposed
in earlier work.
The detailed results for all experiments described in this section
and corresponding binary executables are available online at
http://www.computational-logistics.org/orlib/sclp-id-glts.

5.1. Comparison on SCLP

Table 2 compares our new ID-GLTS approach with existing algo-
rithms that do not enforce the full support constraint. Columns 2–7
are results extracted from existing literature:

GRASP: Greedy Randomized Adaptive Search Procedure (Moura
and Oliveira, 2005).
IC: Iterated Construction (Lim and Zhang, 2005).
FDA: Fit Degree Algorithm (He and Huang, 2011).
VNS: Variable Neighborhood Search (Parreño et al., 2010).
CLTRS: Container Loading by Tree Search (Fanslau and Bortfeldt,
2010).
G2LA: Greedy 2-step Lookahead (Zhu et al., 2012). For BR0–7 the
best results were produced by using simple blocks only; for BR8–
15 the best results were produced by using guillotine blocks.

The next three columns show the average percentage volume
utilization achieved by our ID-GLTS approach when given a search
time limit 10, 300, and 500 CPU seconds per instance, respectively.
We do not include the time taken to generate blocks in this time
limit; this is reported separately in the last column BG (s) (for each
test set, the average over 100 instances are reported). The last row
reports the average CPU time per instance by each approach; for
ID-GLTS, this time includes the search time limit as well as the
time taken to generate blocks. Due to the differences in computa-
tional environments, the CPU time reported cannot be compared
directly.

Prior to this work, the best SCLP approach is G2LA by Zhu et al.
(2012), whose results dominate all previous approaches for all 16
test sets. Note that the results for G2LA were achieved given 500
CPU seconds per instance and using the same computational envi-
ronment as our ID-GLTS approach. Column 500 s shows that, given
a similar amount of CPU time per instance (503.45s vs. 500s), our
approach outperforms G2LA for all test sets. On average, ID-GLTS
achieves a percentage volume utilization that is 0.18% higher for
weakly heterogeneous instances (BR1–7) and 0.34% higher for
strongly heterogeneous instances (BR8–15). Furthermore, Column
300 s shows that, given an average of only 303.45 CPU seconds
per instance, our ID-GLTS algorithm dominates all existing ap-
proaches for 15 out of the 16 test sets (the only exception is test
set BR0, for which we are slightly worse than G2LA).

When we exclude G2LA from our comparison, our ID-GLTS algo-
rithm likewise outperforms all other algorithms for 15 out 16 test
sets when given only 13.45 CPU seconds per instance on average
(we are only slightly worse than CLTRS for BR1). Given the fact that
we only use 1/30 of the CPU time compared to CLTRS (the second-
best algorithm prior to this study), it is reasonable to conclude that
ID-CLTS is indeed more effective than CLTRS even after our supe-
rior computational environment is taken into account.

5.2. Comparison on SCLP-FS

Table 3 compares ID-GLTS with existing algorithms that enforce
the full support constraint. Columns 2–6 are results extracted from
existing literature:

PGL: Parallel Generalized Layer-wise loading approach by Terno
et al. (2000).
PGA: Parallel Genetic Algorithm by Gehring and Bortfeldt (2002).
HB: Heuristics embedded in tree search, proposed by Bischoff
(2006).

http://www.computational-logistics.org/orlib/sclp-id-glts


Table 2
Comparsion on 1600 BR instances (SCLP).

Test set GRASP (2005) IC (2005) FDA (2011) VNS (2010) CLTRS (2010) G2LA (2010) ID-GLTS

10 s 300 s 500 s BG (s)

BR0 – – – 89.95 90.80 90.62 90.79 90.79 0.02

BR1 89.07 91.60 92.92 94.93 95.05 95.54 95.00 95.55 95.59 0.04
BR2 90.43 91.99 93.93 95.19 95.43 95.98 95.53 96.08 96.13 0.05
BR3 90.86 92.30 93.71 94.99 95.47 96.08 95.65 96.24 96.30 0.04
BR4 90.42 92.36 93.68 94.71 95.18 95.94 95.53 96.07 96.15 0.04
BR5 89.57 91.90 93.73 94.33 95.00 95.74 95.24 95.94 95.98 0.04
BR6 89.71 91.51 93.63 94.04 94.79 95.61 95.15 95.72 95.81 0.10
BR7 88.05 91.01 93.14 93.53 94.24 95.14 94.53 95.28 95.36 1.13
BR8 86.13 – 92.92 92.78 93.70 94.63 93.99 94.71 94.80 3.12

BR9 85.08 – 92.49 92.19 93.44 94.29 93.65 94.46 94.53 3.59
BR10 84.21 – 92.24 91.92 93.09 94.05 93.43 94.27 94.35 4.16
BR11 83.98 – 91.91 91.46 92.81 93.78 93.18 94.09 94.14 4.90
BR12 83.64 – 91.83 91.20 92.73 93.67 93.09 94.03 94.10 6.79
BR13 83.54 – 91.56 91.11 92.46 93.54 92.84 93.80 93.86 7.35
BR14 83.25 – 91.30 90.64 92.40 93.36 92.88 93.76 93.83 9.98
BR15 83.21 – 91.02 90.38 92.40 93.32 92.71 93.72 93.78 10.36

Avg (1–7) 89.73 91.8 93.53 94.53 95.02 95.72 95.23 95.84 95.90 0.20
Avg (8–15) 84.13 – 91.91 91.46 92.88 93.83 93.22 94.11 94.17 6.28
Avg (1–15) 86.74 – 92.67 92.89 93.88 94.71 94.16 94.91 94.98 3.45
Time 69 s 707 s 633 s 296 s 320 s 500 s 13.45 s 303.45 s 503.45 s

Table 3
Comparison on 1600 BR instances (SCLP-FS).

Test set PGL (2000) PGA (2002) HB (2006) GRASP (2005) CLTRS (2010) ID-GLTS

30 s 150 s Impr BG (s)

BR0 – – – – 89.83 90.25 90.29 0.46 0.00

BR1 89.9 88.10 89.39 89.07 94.51 94.25 94.40 �0.11 0.00
BR2 89.6 89.56 90.26 90.43 94.73 94.62 94.85 0.12 0.00
BR3 89.2 90.77 91.08 90.86 94.74 94.80 95.10 0.36 0.00
BR4 88.9 91.03 90.90 90.42 94.41 94.46 94.81 0.40 0.00
BR5 88.3 91.23 91.05 89.57 94.13 94.24 94.52 0.39 0.00
BR6 87.4 91.28 90.70 89.71 93.85 93.92 94.33 0.48 0.01
BR7 86.3 91.04 90.44 88.05 93.20 93.22 93.59 0.39 0.18

BR8 – 90.26 – 86.13 92.26 92.27 92.65 0.39 1.29
BR9 – 89.50 – 85.08 91.48 91.65 92.11 0.63 1.19
BR10 – 88.73 – 84.21 90.86 91.13 91.60 0.74 1.14
BR11 – 87.87 – 83.98 90.11 90.25 90.64 0.53 1.00
BR12 – 87.18 – 83.64 89.51 89.77 90.35 0.84 1.02
BR13 – 86.70 – 83.54 88.98 89.11 89.69 0.71 0.96
BR14 – 85.81 – 83.25 88.26 88.40 89.07 0.81 0.77
BR15 – 85.48 – 83.21 87.57 87.70 88.36 0.79 0.67

Avg (1–7) 88.5 90.40 90.50 89.70 94.20 94.22 94.51 0.31 0.03
Avg (8–15) – 87.69 – 84.13 89.88 90.03 90.56 0.68 1.00
Avg (1–15) – 89.00 – 86.70 91.90 91.99 92.40 0.50 0.55
Time (s) – 183 – 69 320 30.55 150.55
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GRASP: Greedy Randomized Adaptive Search Procedure (Moura
and Oliveira, 2005).
CLTRS: Container Loading by Tree Search (Fanslau and Bortfeldt,
2010).

The next two columns are the results of ID-GLTS under the
search time limits of 30 and 150 CPU seconds per instance, respec-
tively. Column Impr gives the difference between the volume utili-
zation of solutions produced by ID-GLTS and CLTRS, which is the
best algorithm for SCLP-FS prior to this work and whose results
dominate all previous approaches for all 16 test cases. Once again,
the time taken to generate blocks is reported separately under Col-
umn BG (s).

Given 30 CPU seconds per instance, our ID-GLTS approach out-
performs CLTRS (the 2nd best existing approaches) for 13 out of
the 16 test sets; for BR1, BR2 and BR3, our approach is slightly
worse than CLTRS. When given 150 CPU seconds, our approach
outperforms G2LA (the best existing approaches) for 15 out 16 test
sets (the exception is BR1, where our approach is slightly worse).
For weakly heterogeneous instances (BR1–7), ID-GLTS outperforms
CLTRS by 0.31% on average, while for strongly heterogeneous in-
stances (BR8–15), it outperforms CLTRS by 0.68%. An inspection
of the values in Column Impr suggests that as the heterogeneity
of the instances increase, the relative improvement of ID-GLTS
compared to CLTRS increases.
6. Conclusion

The Iterative-Doubling Greedy–Lookahead Tree Search
(ID-GLTS) approach proposed in this paper is currently the best
algorithm for both the SCLP and SCLP-FS on standard benchmark
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test data. It is a typical block building approach with two main dif-
ferences compared to existing approaches. Firstly, we use the Man-
hattan distance measure to evaluate the fitness of a residual space,
which is simpler to compute and slightly more effective than the
existing corner distance measure. Secondly, rather than greedily
selecting a residual space and then selecting a block to place using
a tree search (which we call the Single-Best-Space scheme), our
algorithm also incorporates a tree search on block-space pairs
(which we call the Multi-Best-Space scheme).

Our final implementation of ID-GLTS allocates half the alloted
time to Single-Best-Space and half to Multi-Best-Space, and takes
the better solution of the two. Our experiments show that the
two schemes are often complementary, and so this 50/50 alloca-
tion of time is superior to using all the time on either scheme
alone. Note that the Single-Best-Space and Multi-Best-Space com-
putations are totally independent and can be trivally parallelized,
which enables our ID-GLTS approach to take advantage of the mul-
ti-core architecture of the latest CPUs. The total execution time of
this parallel version is expected to be a little more than half of the
sequential version.

Since our approach is able to obtain high quality solutions in
short time, it is a good candidate as a subrouting to solve other
loading problems, such as the multiple container loading problem
and the 3D strip packing problem (3DSP). In the process of solving
the multiple container loading problem (Che et al., 2011), the
single container loading problem are solved many times. Our
approach may inspire more efficient algorithms to such problems.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejor.2012.04.036.
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