
Computers & Operations Research 39 (2012) 2267–2276
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/caor
A heuristic block-loading algorithm based on multi-layer search for the
container loading problem
Defu Zhang a, Yu Peng b,n, Stephen C.H. Leung c

a Department of Computer Science, Xiamen University, 361005, China
b Department of Computer Science, Hong Kong University, Hong Kong
c Department of Management Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
a r t i c l e i n f o

Available online 25 October 2011

Keywords:

Container loading problem

Heuristic algorithm

Depth-first search
48/$ - see front matter & 2011 Elsevier Ltd. A

016/j.cor.2011.10.019

esponding author. Tel.: þ852 28578465; fax:

ail address: ypeng@cs.hku.hk (Y. Peng).
a b s t r a c t

This paper presents an efficient heuristic block-loading algorithm based on multi-layer search for the

three-dimensional container loading problem. First, a basic heuristic block-loading algorithm is

introduced. This algorithm loads one block, determined by a block selecting algorithm, in one packing

phase, according to a fixed strategy, until no blocks are available. Second, the concept of composite

block is introduced, the difference between traditional block and composite block being that composite

block can contain multiple types of boxes in one block under some restrictions. Third, based on the

depth-first search algorithm, a multi-layer search algorithm is developed for determining the selected

block in each packing phase, and making this result closer to the optimal solution. Computational

results on a classic data set show that the proposed algorithm outperforms the best known algorithm in

almost all the test data.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In logistics and transportation industries, three-dimensional
packing problems often occur. Improving the efficiency of packing
(space utilization) has become a very important issue as the
global economy is becoming ever more competitive. An effective
method for solving three-dimensional packing problems is not
only of great economic importance in logistics and transportation
processes but also has environmental implications since lower
fuel consumption helps to reduce pollution.

The container loading problem is a typical three-dimensional
packing problem that involves several practical applications
having different optimization objectives and loading constraints.
Thus there exist many variants of the problem. Dyckhoff and
Finke [1] outline the different types of loading problems, and give
the corresponding classification, such as a single container load-
ing problem, multi-container loading problem, homogeneous
loading problem (containing only one type of box) and hetero-
geneous loading problems (including many types of boxes). The
single container loading problem considered by this paper can be
described as follows.

Assume a container (of volume V) and a series of boxes to be
packed into the container. The container and the boxes are of
cuboid shape. The objective is to determine a feasible loading plan
ll rights reserved.

þ852 25598447.
that meets the given loading constraints and maximizes utiliza-
tion of space in the container, i.e. the filling rate (S/V�100%) is as
large as possible, where S is the total volume of boxes loaded in
the container. A feasible loading plan must meet the following
criteria:
(1)
 Any loaded box cannot overlap with the container, and no two
boxes can overlap each other;
(2)
 The surface of the loaded boxes is parallel to the surface of the
container.
When solving real-world container loading problems, one has
to consider some practical constraints, such as orientation con-
straints, loading stability, load bearing strength of boxes, handling
constraints, container weight limit and so on [2]. This paper
considers the following two constraints:

(C1) Orientation constraint: for certain box types, up to five of
the maximum six possible orientations are prohibited.
(C2) Support constraint: in a given packing plan the area of
each box not placed on the floor of the container must be
supported completely (i.e. 100%) by other boxes.

The remainder of this paper is organized as follows. In the next
section an overview of literature is provided. In Section 3 main
parts of the proposed algorithm are introduced. In Section 4
computational experiments are described and analyzed. Finally,
in Section 5 conclusions are drawn.

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.10.019
mailto:ypeng@cs.hku.hk
dx.doi.org/10.1016/j.cor.2011.10.019
dx.doi.org/10.1016/j.cor.2011.10.019

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–22762268
2. Literature review

The container loading problem is a typical NP-hard problem
[3], so there is no polynomial-time optimal algorithm for solving
it. Exact algorithms often encounter the ‘‘combinatorial explo-
sion’’ phenomenon as the problem size increases. Studies on
the exact algorithms show that they solve problems of limited
size only. Therefore, heuristic methods become the first choice
of theoretical studies and practical applications. George and
Robinson [4] first presented a wall-building heuristic algorithm.
Bischoff and Marriott [5] compared 14 kinds of layer-based
approaches. Based on the idea of plane, Bischoff et al. [6]
presented a heuristic algorithm for the heterogeneous loading
problem. Constructive algorithms have also been developed by
Bischoff and Ratcliff [2] and Bischoff [7]. Lim et al. [8] developed a
heuristic algorithm. Juraitis et al. [9] presented a randomized
heuristic algorithm. Huang and He [10,11] proposed two effective
heuristic algorithms based on the idea of caving degree for a class
of container loading problems.

By combining with constructive algorithms, many meta-heur-
istic algorithms have been proposed. A series of research results
have been obtained using tabu search [12], genetic algorithm [13]
and hybrid algorithms [14]. In order to improve the performance of
metaheuristics, the parallelization technique is used by Gehring and
Bortfeldt [15], Bortfeldt et al. [16] and Mack et al. [17]. Based on the
idea of free space, Moura and Oliveira [18] proposed a greedy
random adaptive search algorithm (GRASP). Parreño et al. [19]
further developed GRASP using the concept of maximal space, a
nondisjoint representation of free space in a container. Zhang
et al. [20] presented a combinational heuristic algorithm that
combined personification heuristics and simulated annealing
algorithm. Zhang et al. [21] further developed a hybrid simulated
annealing algorithm based on the block heuristic idea. Recently,
Parreño et al. [22] presented a variable neighborhood search
(VNS) algorithm that combines a constructive procedure based
on the concept of maximal-space. He and Huang [23] developed a
algorithm BasicHeuristic (isComposite, searc
if isComposite then

blockTable : = GenSimpleBlock (problem.c
else then

blockTable : = GenSimpleBlock (problem.co
endif
set search parameters according to search Para
ps.avail : = problem.num
ps.plan : = {}
ps.volume = 0
ps.spaceStack : = {}
ps.spaceStack .push (problem.container)
while ps.spaceStack ≠ {} do

space := ps.spaceStack.top ()
blockList := GenBlock List (ps.space, ps
if blockList ≠ {} then

block := FindNextBlock (ps, block
ps.spaceStack .pop ()
ps.avail := ps.avail - block.require
ps.plan := ps.plan + (space, block
ps.plan.volume := ps.plan.volume
ps.spaceStack.push (GeResidulSpac

else then
TransferSpace(space, ps.spaceStack

endif
endwhile
return ps.plan

Fig. 1. Basic block-loading
fit degree algorithm by combining the constructive algorithm
with local search for the container loading problem.

In addition, incomplete tree search or graph search methods
have also been applied successfully to the 3D-CLP. Morabito and
Arenales [24] presented a search method based on And/Or graph.
Eley [25] designed an algorithm based on the same block. Hifi [26]
proposed a tree search method. Pisinger [27] presented an
algorithm that first divides the whole container space into several
vertical layers, then divides layers into a number of horizontal or
vertical strips and then uses an algorithm for the knapsack
problem. Bortfeldt and Mack presented a heuristic algorithm that
was derived from a branch-and-bound approach [28]. Fanslau and
Bortfeldt [29] proposed an effective tree search algorithm based
on the idea of composite block, which is the best algorithm in
existing literature.

In this paper, a heuristic block-loading algorithm based on
multi-layer search is proposed; experimental results show that
the proposed algorithm outperforms the existing algorithm in the
literature.
3. Heuristic block-loading algorithm based on multi-layer
search

3.1. Basic heuristic block-loading algorithm

Heuristic algorithms are preferred because of practical needs
and the resultant complexity of the loading problem. A good
heuristic algorithm should not only be able to quickly find a
solution close to the optimal solution, but also provide the
necessary flexibility for different situations and needs. In this
paper, a block-loading heuristic algorithm is proposed for solving
the container loading problem. This algorithm works as follows.
First generate a list of all feasible blocks, and initialize the residual
space in the stack to contain the container as the sole residual
space, and then start the iteration process. Each iteration takes
hParams, problem)

ontainer, problem.box List, problem.num)

ntainer, problem.box List, problem.num)

ms

.avail)

List)

)
 + block.volume
e(space , block))

)

heuristic algorithm.

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–2276 2269
one residual space from the top of the stack, and then generates a
list of feasible blocks for it; if the list is not empty, then the block
selection algorithm is used to determine a block and pack the block
into this residual space to generate a loading, and then this space is
divided into new spaces which are added to the stack. Otherwise,
give up the current residual space, and try to reuse its space the
algorithm repeats the loading process until the stack is empty.
Where a feasible block denotes a block can be packed into one
residual space. A block is an arrangement made up of one or more
oriented boxes. A residual space denotes an oriented cuboid space in
the container. The idea of this algorithm is somehow similar to the
basic heuristic algorithm developed by Bortfeld et al. [16], but it is a
more efficient and effective heuristic algorithm.

Fig. 1 gives detailed description of the basic block-loading
heuristic algorithm. This algorithm first generates all possible
blocks according to the value of input parameter isComposite and
initializes the current partial loading plan and then starts the
loading process. At each loading stage, the algorithm takes a
residual space from the stack, and then uses GenBlockList
to generate a list of feasible blocks. If the list is not empty,
FindNextBlock algorithm selects a block to load and adds it to the
current partial loading plan, and then uses GenResidulSpace
algorithm to divide the unfilled space into residual spaces and
adds them into the stack. If the list is empty, the algorithm
TransferSpace tries to transfer the available part of the residual
space to the corresponding space in the stack.

The space denotes a cuboid space and is determined by the
reference point and its three side dimensions, problem denotes a
loading problem and is defined by the container, Box list the
available boxes and block stands for a simple or a composite block
and records the number of boxes in this block. Moreover, block

records one rectangle region that can support other boxes while
considering Constraint C2. Since the block may contain gaps,
other blocks cannot be loaded if these blocks lose the support of
the box. In addition, block records the number of combinations
that limits the maximum number of composited blocks in order
to decrease the complexity of generating the composite block.
This algorithm includes four core parts that are introduced in the
next sections.

3.2. Generation of block

Simple block is a cuboid generated by boxes of the same type
with the same orientation and has no wasted space between
boxes. GenSimpleBlock algorithm enumerates all possible combi-
nations of boxes of the same type and the corresponding block is
added to the block list. Composite block is a combination of
simple blocks and is defined as follows:
(1)
 A simple block is a basic composite block;

(2)
 There are two composite blocks a and b. Composite block c

can be obtained in x-axis, y-axis and z-axis directions; details
can be found in [21,29].
Fig. 2. Mergence of supported recta
Clearly, according to the above definition, the number of
composite blocks will be exponential, and a randomly generated

composite block may contain many holes, which are not con-
ducive to loading. Therefore, it is necessary to impose certain
restrictions on the composite block, which are as follows:
(1)
ngle
The composite block size is not larger than the size of the
container.
(2)
 The number of each type of boxes for the composite block is
less than the number of the corresponding available boxes.
(3)
 The composite block may contain holes, but its filling rate is
not less than MinFillRate.
(4)
 In order to control the complexity of generating the compo-
site block, the composite number of composite blocks is
defined as follows: complexity of a simple block is 0, and
complexity of other composite blocks is the complexity of its
subblock plus one. The composite number of generated blocks
is limited to at most MaxTimes.
(5)
 For composite blocks with the same length of three edges,
same boxes and same supported rectangle are considered as
equivalence. Repeated equivalent blocks will be ignored.
(6)
 While considering C2, composite of subblocks in x-axis and
y-axis directions must ensure that supported rectangles of
subblocks can be merged into one supported rectangle,
namely, the subblocks have the same height and their
supported rectangles are adjacent. In addition, the composite
of subblocks in z-axis direction must meet C2, namely, the
above subblock must be placeable on the supported rectangle
of the subblock below. Fig. 2 describes the mergence of
supported rectangles, where the shaded region denotes the
supported rectangles. For example, in Fig. 2(b), composite
blocks B and C have the same height, and their supported
rectangles are merged into one supported rectangle pqsr.
While meeting the above constraints, the number of blocks is
still large, and we limit the block generation algorithm to stop
when the number of blocks increases to MaxBlocks.

According to the definition of the composite block, Fig. 3 gives
a composite block generation algorithm. This algorithm first calls
in a simple block generation algorithm to generate all possible
simple blocks and then, it iterates MaxTimes times, in each
iteration, for any two generated composite blocks, and tries
to combine them together in x-axis, y-axis and z-axis directions.
If a and b meet the composite conditions described above, then
the new generated composite block c is added into the block list.

3.3. Generation of feasible block list

GenBlockList is used to generate a list of feasible block from
blockTable for the current residual space where blockTable is a list
of all feasible blocks, and is pre-generated before the algorithm
begins, in order to avoid the repetitive computation. Therefore,
the basic block-loading heuristic algorithm has nothing to do with
s; (a–c) merging in x-axis.

algorithm GenComplexBlock (container, boxList, num)
blockTable := GenSimpleBlock(space, boxList, num)
for times := 0 to MaxTimes-1 do
 newBlockTable := {}

for each a, b in blockTable do
 if a. times = times or b. times = times then
 if a and b satisfied the constraints in x-direction then

c := combine a, b in x-direction
add c to newBlockTable

 endif
 if a and b satisfied the constraints in y-direction then

c := combine a, b in y-direction
add c to newBlockTable

 endif
 if a and b satisfied the constraints in z-direction then

c := combine a, b in z-direction
add c to newBlockTable

 endif
 endif

endfor
blockTable := blockTable + newBlockTable
reduce duplicated block in blockTable

endfor
sort blockTable by decreasing volume of blocks.
return blockTable

Fig. 3. Composite block generation algorithm.

algorithm GenBlockList (space, avail)

blockList : = {}

for each block in blockTable do

if block.require ≤ avail

and block.lx ≤ space.lx

and block.ly ≤ space.ly

and block.lz ≤ space.lz then

blockList := blockList + block

endif

endfor

return blockList

Fig. 4. A feasible block list generation algorithm.

algorithm MultiLayerSearch (ps, depth, maxD, MaxHeap, effort)
result.volumeComplete := 0
add ps to heap[0]
for layer := 0 to depth-1 do

keep heap [layer] containing only the best MaxHeap elements
for each ps in heap[layer] do

for d := 1 to maxD do
branch := max{b | bd ≤ effort}
DepthFirstSearch1(ps, d, branch, layer + d)

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–22762270
GenBlockList, so that GenBlockList can be changed according to
the users’ demand.

Fig. 4 describes a feasible block list generation algorithm. This
algorithm scans blockTable, and returns all the blocks that can be
placed into the residual space and still have enough residual
boxes where blocks in blockTable are sorted by the total volume of
boxes in blocks in descending order, and a list of feasible blocks
returned has the same descending order of boxes’ volume.

3.4. Block selection based on multi-layer search

Based on integer decomposition, Fanslau and Bortfeldt [29]
presented a tree search algorithm (CLTRS) for selecting one block
and obtained excellent results; it is the best algorithm so far.
However, after carefully analyzing CLTRS, we found that CLTRS is
still worthy to be further improved as
endfor
endfor
(1)
endfor
return the maximum in heap [depth]

Fig. 5. Multi-layer search algorithm.
For the specified integer decomposition, CLTRS may select for
each stage only the local optimal solution in the current state,
and then execute the next stage search. However, the local
optimum, after all, is not the global optimum; if there occurs
the inferior choice at some stage, the subsequent evaluation
may have bias. Although the algorithm can search more states
by enumerating all integer decomposition, some better blocks
that need deeper search are difficult to be found because of
local choice.
(2)
 During the search process, a large part of computing is
actually repeated, not only because different decomposition
ways overlap, but also because the node searched by different
decompositions is likely to be the same. In these cases,
repetitive computing is not necessary.
Based on the above analysis, we propose a multi-layer search
approach where one layer is equivalent to an integer decomposi-
tion in which the depth of each layer is 1. i-level node is the initial
partial loading plan after i blocks is placed. This algorithm is
different from the tree search algorithm in that it does not select
one block to continue search, but selects the best MaxHeap partial
loading plans and uses different depths d to call the depth-first
search algorithm, and inserts all search results into the results of
the corresponding iþd level. In each layer, the algorithm uses the
heap to save MaxHeap optimal results. Iterative algorithm starts
from 0 level until depth layers. This algorithm is similar to the tree
search, but in each layer MaxHeap nodes are extended and the
upper nodes that have been computed will not be recalculated.

Fig. 5 describes the multi-layer search algorithm. depth

describes the number of blocks to be loaded, maxD specifies the
largest depth to be tried in each layer, MaxHeap is the maximum
number of optimal partial loading plans that are maintained by
the heap in each layer, effort denotes the complexity of search and
means that depth first search in any stage can at most visit effort

leaf nodes. DepthFirstSearch is a depth first search algorithm. This
algorithm not only records the local optimal solution, but also
adds the evaluation results of all leaf nodes to the corresponding
layer; its details are given in Fig. 6.

Fig. 7 describes a block placement algorithm. This algorithm
combines the block and the current residual space into the
current plan and manages the residual space according to
Table 1 and Table 2.

Fig. 8 describes the block removal algorithm, which is the
inverse process of Fig. 7. This algorithm removes the placement of
the current block from the current partial loading plan, recovers
the used boxes and original residual space.

Fig. 9(a) and (b) shows two examples of the multi-layer search,
where the route and the branch relating to the optimal node are
listed, and other details are ignored. Fig. 9(a) shows a typical
running result. This algorithm starts from level 0, and executes
depth-first search with depths 1 and 2. This algorithm extends the
two optimal nodes for level 1, where one node finds the other
optimal node in the whole process after another depth-first
search with depth 2 being finished. Fig. 9(b) describes a similar

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–2276 2271
instance. The difference is that the optimal node is found after the
depth-first search with depth 2 followed by a depth-first search
with depth 1.

The multi-layer search is used to design the block selection
algorithm. Since optimal N solutions in level kþ1 may come from
optimal N solutions in level k, it is not necessary to execute multi-
layer search with the largest depth for all the feasible blocks; we
can search in different depths and use the greedy algorithm to
filter out some worse feasible blocks. However, N needs to be
algorithm DepthFirstSearch(ps, depth, branch, layer)
if depth then

space := ps.spaceStack.top()

blockList := GenBlockList(ps.space, ps.avail)

if blockList then

for i := 0 to branch-1 do
 PlaceBlock(ps, blockList[i])

 DepthFirstSearch(ps, depth-1, branch, layer)

 RemoveBlock(ps, blockList[i], space)
 endfor
else then
 TransferSpace(space, ps.spaceStack)

DepthFirstSearch(ps, depth, branch, layer)

TransferSpaceBack(space, ps.spaceStack)
 endif

else then
Complete(ps)

add ps to heap[layer]

endif

Fig. 6. An improved depth first search algorithm.

algorithm PlaceBlock(ps, block)

space := ps.spaceStack.top()

ps.spaceStack.pop()

ps.avail := ps.avail - block.require

ps.plan := ps.plan + (space, block)

ps.plan.volume := ps.plan.volume + block.volume

ps.spaceStack .push(GenResidulSpace(space, block))

Fig. 7. Block placement algorithm.

Table 1
The partition way of the residual space (with C2).

Partition condition Partition way Order of entering stac

myZmx Fig. 11(a) spaceZ, spaceX, space

mxZmy Fig. 11(b) spaceZ, spaceY, space

Table 2
The partition way of the residual space (without C2).

Partition condition Partition way Order of inserting sta

myZmxZmz Fig. 12(a) spaceZ, spaceX, space

mxZmyZmz Fig. 12(b) spaceZ, spaceY, space

myZmzZmx Fig. 12(c) spaceX, spaceZ, space

mzZmyZmx Fig. 12(d) spaceX, spaceY, space

mxZmzZmy Fig. 12(e) spaceY, spaceZ, space

mzZmxZmy Fig. 12(f) spaceY,spaceX,spaceZ
large enough so that the final optimal solution can be included
with large probability.

Fig. 10 gives the block selection algorithm, which uses the
incremental search depth to execute the multi-layer search; each
time half of the worse blocks are filtered out until the number of
feasible blocks is not greater than N.
3.5. Partition and transfer of residual space

At each loading stage, a residual space is loaded either with
feasible blocks or without feasible blocks. If there are feasible
blocks available for the residual space, the algorithm selects one
feasible block according to the block selection algorithm, and then
loads this block and divides the residual space into three new
spaces and inserts them into the stack. Otherwise, the current
residual space is deleted if its partial spaces can be incorporated
into the corresponding spaces in the stack, then transfer these
partial spaces so that they can be reused.

Figs. 11 and 12 show the partition and transference of the
residual space for loading problems with and without C2, respec-
tively. The residual space is divided into three spaces (spaceX,
spaceY and spaceZ) according to different cases where spaceX,
spaceY and spaceZ denote spaces along x-axis, y-axis and z-axis
directions, respectively. It is noted that while considering C2,
spaceZ is divided along the placing rectangle (ax� ay as shown in
Fig. 11(a)) in order to guarantee that spaceZ gets adequate
support; so there are two partition ways for this case, as shown
in Fig. 11. For without C2 case, there are six partition ways as
shown in Fig. 12.

As shown in Figs. 11 and 12, the difference between partition
ways is spaces that will be transferred in different way. We hope
to ensure the integrity of the space as much as possible during the
partition process. There are many ways to measure the space
k Transferring condition Transferring result

Y spaceY has no feasible block Fig. 11(b)

X spaceX has no feasible block Fig. 11(a)

ck Transferring condition Transferring result

Y spaceY has no feasible block Fig. 12(e)

spaceX has no feasible block Fig. 12(c)

X spaceX has no feasible block Fig. 12(c)

spaceY has no feasible block Fig. 12(e)

Y spaceY has no feasible block Fig. 12(f)

spaceZ has no feasible block Fig. 12(a)

Z spaceZ has no feasible block Fig. 12(a)

spaceY has no feasible block Fig. 12(f)

X spaceX has no feasible block Fig. 12(d)

spaceZ has no feasible block Fig. 12(b)

spaceZ has no feasible block Fig. 12(b)

algorithm RemoveBlock (ps, block , space)

ps.avail := ps.avail + block.require

ps.plan := ps.plan - (space, block)

ps.plan.volume := ps.plan.volume - block.volume

remove 3 top spaces from ps.spaceStack

ps.spaceStack .push(space)

Fig. 8. Block removal algorithm.

Fig. 9. Multi-layer heuristic search algorithm. (a) depth¼3, maxD¼2, MaxHeap¼2, (b) depth¼3, maxD¼2, MaxHeap¼2.

algorithm FindNextBlock(ps, blockList)
for depth := 1 to maxDepth do

for each block in blockList do
space := ps.spaceStack.top()
PlaceBlock(ps, block)
block.fitness := MultiLayerSearch(ps, depth, maxD, MaxHeap, effort)
Remove(ps, block, space)

endfor
sort the blockList by decreasing fitness
if size(blockList) > 2N then

blockList := the first half of blockList
else then

blockList := first N in blockList
endif

endfor
return the block with maximum fitness

Fig. 10. Block selection algorithm.

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–22762272
integrity. The strategy in this paper is to make the divided
residual space as large as possible. The size of the divided residual
space is determined by the residual length mx, my and mz in the
x-axis, y-axis and z-axis, after one block is placed into the residual
space as shown in Fig. 13, and the transferable space is the space
with the largest residual length. GenResidualSpace implements
the partition of the unfilled space, the returned residual spaces
(spaceX, spaceY, spaceZ) are sorted by non-decreasing of mx, my,
mz, and ensures that the space including the transferable space is
the last to be inserted into the stack. Tables 1 and 2 show the
partition ways of the residual spaces.

As the one with transferable space is the last one added to the
stack, once there is no feasible block for it, the transferable space
in it can be reused. As shown in Fig. 13, we can observe that re-
allocation of the transferable space is actually to recut the unfilled
space. Recutting of the unfilled space is implemented by the
TransferSpace algorithm. TransferSpace first judges whether one
or two residual spaces in the top of the stack come from the same
partition as the current space; if that is the case, transferable
spaces of the current residual space are transferred to them. The
details are described in Tables 1 and 2.
4. Computational results

In order to verify the performance of the heuristic block-
loading algorithm based on multi-layer search (HBMLS) for
different problems, HBMLS is run on an Intels Xeons X5460 @
3.16GHz. The running and compiling environment is Debian
Linux and gcc 4.3.2. Settings of constants in HBMLS are given as
follows: MinFillRate¼0.98, MaxTimes¼5, MaxBlocks¼10000,
N¼16, MaxD¼2, MaxHeap¼6. The 6 group parameter settings
used in our experiment, group i is set as MaxDepth ¼ iþ1,
effort¼3i�1, i¼1,2,y,6, Time Limit¼500. HBMLS chooses the best
results among the tested groups as the final results. When the
execution exceeds the Time Limit, the next group parameter will
not be run. In addition, while the algorithm uses one group
parameter to calculate, two algorithms based on simple and
composite blocks are calculated in parallel by the two threads
and the corresponding results are recorded for comparison.

The test data comes from [2], including 16 classes from BR0 to
BR15 each class includes 100 instances. There are 1600 instances
in total. These instances can be downloaded from OR-Library [30]
or http://59.77.16.8/Download.aspx#p4. The number of types in
16 classes ranges from 1 to 100, heterogeneous, from weak to
strong. So it is appropriate to test the performance of loading
algorithms where BR0 only contains one kind of box type, which
means purely homogeneous loading instances. BR1–BR7 belongs
to a weak heterogeneous loading problem, while BR8–BR15 is a
strongly heterogeneous loading problem.

4.1. Evaluation of composite block and multi-layer search

In order to verify the effectiveness of composite block and
multi-layer search, we run HBMLS for 1600 instances.
Tables 3 and 4 report the computational results of HBMLS where
Meann denotes the average number of boxes, AS denote the
algorithm using simple block and AC denotes the algorithm using
composite block. Combine denote the algorithm combining simple
block with composite block. Compositebetter denotes the number
of times AC performs better than AS. From Tables 3 and 4, we can
observe that irrespective of whether we take C2 into account or
not, AC is generally better than AS. AC performs better as the
heterogeneous instances become strong.

From Tables 3 and 4, the filling rate of different algorithms will
decrease as the heterogeneous classes become strong, no matter
whether C2 is considered or not. The reason is that search space will
become larger as the number of boxes increases so that these
algorithms need more time to find a better solution. The advantage
of composite block is that it can combine more boxes together in a
compact way so that one loading can load more without lossing too
much filling rate. Therefore, composite block decreases the size of
the solution space without influencing the solution quality, and thus
it obtains better results than a simple block, and this advantage
increases as the number of types of boxes increase.

On the other hand, when taking into account C2, the filling rate
decreases by about 0.5% to 4.0%, because C2 makes many loading
cases impossible and loses the loading flexibility. At the same
time, this is the reason why algorithms for C2 need shorter
running time.

4.2. Comparison with other algorithms

For BR1–BR15, many researchers have tested their algorithms for
these instances. The compared algorithms include H_E by Eley [25],
a parallel tabu search algorithm (PTSA) by Bortfeldt et al. [16],
parallel hybrid algorithm (PHYB) by Mack et al. [17], MFB by Lim

http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

Fig. 11. Partition of the residual space with supported constraint C2.

Fig. 12. Partition of the residual space without supported constraint C2.

Fig. 13. Transferable space.

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–2276 2273
et al. [8], random heuristic algorithm (RHA) by Juraitis et al. [9], a
new heuristic algorithm (H_B) by Bischoff [7], SPBBL-CC4 by
Bortfeldt and Mack [28] and the combination heuristic (CH) [20].
The algorithms mentioned above only considered weak heteroge-
neous loading problem and only tested classes BR1–BR7. In parti-
cular, hybrid genetic algorithms (HGA_GB) by Bortfeldt and Gehring
[14] and parallel genetic algorithm (PGA_GB) [15], the greedy
random adaptive search algorithm (GRASP1) [18], GRASP2 [19],
hybrid simulated annealing algorithm (HSA) [21], variable neighbor-
hood search (VNS) [22], fit degree algorithm (FDA) [23] and tree
search algorithm (CLTRS) [29] are included. These algorithms tested
BR1–BR15. In addition, A2 by Huang and He [11] also reports the
results of BR8–BR15.

The results of these algorithms mentioned above are directly
from the literature and are published after 2000. We obtained a
CLTRS program from Bortfeldt and Fanslau [29] and ran it in the
same computer as HBMLS. Tables 5 and 6 report the computa-
tional results of all the algorithms. All the data in Tables 5 and 6
denote the average filling rate (%) for one class, while Mean
denotes the average filling rate (%) for all the classes.

From Table 5, we can observe that no matter whether C2 is
considered or not, HBMLS outperforms all the compared algorithms

Table 3
HBMLS (without C2).

class Box type Meann Filling rate (AS) (%) Filling rate (AC) (%) Filling rate (Combine) (%) Compositebetter Time (s)

BR0 1 206 89.90 89.77 89.95 4 3.38

BR1 3 50 94.87 93.54 94.92 13 14.1

BR2 5 27 95.41 94.47 95.48 26 34.18

BR3 8 17 95.56 95.12 95.69 28 79.43

BR4 10 13 95.38 95.10 95.53 35 115.59

BR5 12 11 95.22 95.08 95.44 52 155.1

BR6 15 9 95.10 95.21 95.38 60 217.57

BR7 20 7 94.69 94.87 95.00 68 327.88

BR8 30 4 94.16 94.60 94.66 71 537.41

BR9 40 3 93.76 94.24 94.30 82 730.33

BR10 50 3 93.38% 94.08 94.11 89 874.59

BR11 60 2 92.87 93.86 93.87 93 1050.7

BR12 70 2 92.59 93.67 93.67 98 1161.61

BR13 80 2 92.25 93.45 93.45 98 1145.13

BR14 90 1 91.84 93.34 93.34 100 1256.03

BR15 100 1 91.53 93.14 93.14 100 1255.71

Mean 1–7 10.43 19.14 95.18 94.77 95.35 40.29 134.84

Mean 8–15 65 2.25 92.80 93.80 93.82 91.38 1001.44

Mean 1–15 39.53 10.13

93.91

94.25 94.53 67.53 597.02

Table 4
HBMLS (with C2).

class Box type Meann Filling rate (AS) (%) Filling rate (AC) (%) Filling rate (Combine) (%) Compositebetter Time (s)

BR0 1 206 89.76 89.69 89.81 6 2.98

BR1 3 50 94.30 93.95 94.43 33 14.71

BR2 5 27 94.74 94.39 94.87 35 36.43

BR3 8 17 94.89 94.67 95.06 48 80.33

BR4 10 13 94.69 94.54 94.89 53 116.13

BR5 12 11 94.53 94.41 94.68 44 153.38

BR6 15 9 94.32 94.25 94.53 56 204.15

BR7 20 7 93.78 93.69 93.96 56 295.69

BR8 30 4 92.88 93.13 93.27 67 454.76

BR9 40 3 92.07 92.54 92.60 75 603.94

BR10 50 3 91.28 92.02 92.05 89 722.46

BR11 60 2 90.48 91.45 91.46 93 842.52

BR12 70 2 89.65 90.91 90.91 95 956.2

BR13 80 2 88.75 90.43 90.43 98 1019.06

BR14 90 1 87.81 89.80 89.80 99 1129.06

BR15 100 1 86.94 89.24 89.24 98 1152.71

Mean 1–7 10.43 19.14 94.47 94.27 94.63 46.43 128.69

Mean 8–15 65 2.25 89.98 91.19 91.22 89.25 860.09

Mean 1–15 39.53 10.13 92.07 92.63 92.81 69.27 518.77

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–22762274
for BR2–BR7. For BR1, HBMLS is a little bit worse than CLTRS. From
the average filling rate, HBMLS outperforms all algorithms. In
particular, compared to the latest algorithm FDA and the best
algorithm CLTRS for BR1–BR7, HBMLS improves performance by
1.82% and 0.34%, respectively, while considering C1. Compared to
CLTRS, HBMLS improves performance by 0.44% while considering
C1&C2.

From Table 6, we can observe that no matter if C2 is
considered or not, HBMLS outperforms all the compared algo-
rithms for BR8–BR15. It shows that HBMLS performs better for
strongly heterogeneous loading problems. In particular, compared
to the latest algorithm FDA and the best algorithm CLTRS for
BR8–BR15, HBMLS improves performance by 1.91% and 0.89%,
respectively, while considering C1. Compared to CLTRS, HBMLS
improves efficiency by 1.38% while considering C1&C2.

Since different algorithms are run on different computers, it is
very difficult to fairly compare the running time of different
algorithms. Therefore, we give only a comparison of HBMLS and
CLTRS because they are run on the same computer (CPU to
3.16 GHz). For BR1–BR15, while considering C1, the average running
time of HBMLS algorithm is 597.02 s, while the average running
time of CLTRS is 321.46 s. While considering C1&C2, the average
running time of HBMLS is 518.77 s, while CLTRS is 317.55 s.

As the container loading problems are of great practical value,
many researchers have conducted their researches on them, and
the obtained filling rate is more and more close to the optimum.
Therefore, further improving the filling rate has become increas-
ingly difficult. However, when considering C1, C1&C2, compared
to the best algorithm CLTRS, HBMLS still obtains the average
improvement of 0.63% and 0.94% for BR1–BR15. Experimental
results show that HBMLS is very effective for the container
loading problem. At the same time, we can also observe that
the advantage of the solution, in a sense, can be inherited. This
fact is quite logical because a good solution is likely to be
extended to another good solution. This feature can be described
as follows. Although N optimal solutions in k layer may not be the
parent node of N optimal solutions in kþ1 layer, N optimal
solutions in k layer are likely to include all parent nodes of N

optimal solutions in kþ1 layer. This is why HBMLS is better than
the best CLTRS. Only selecting one optimal solution may miss the

Table 5
Results of different algorithms for BR1–BR7.

Algorithms Constraints BR1 BR2 BR3 BR4 BR5 BR6 BR7 Mean

HGA_BG [14] C1 87.81 89.4 90.48 90.63 90.73 90.72 90.65 90.06

PGA_GB [15] C1 88.1 89.56 90.77 91.03 91.23 91.28 91.04 90.43

H_E [25] C1&C2 88 88.5 89.5 89.3 89 89.2 88 88.79

PHYB [17] C1 93.41 93.82 94.02 93.68 93.18 92.64 91.68 93.20

MFB [8] C1 87.4 88.7 89.3 89.7 89.7 89.7 89.4 89.13

RHA [9] C1 88.4 89.0 89.4 89.5 89.4 89.6 89.5 89.26

H_B [7] C1&C2 89.39 90.26 91.08 90.90 91.05 90.70 90.44 90.55

SPBBL-CC4 [28] C1 87.3 88.6 89.4 90.1 89.3 89.7 89.2 89.09

CH [20] C1 89.94 91.13 92.09 91.94 91.72 91.45 90.94 91.32

GRASP1 [18] C1 93.52 93.77 93.58 93.05 92.34 91.72 90.55 92.65

GRASP2 [19] C1 93.85 94.22 94.25 94.09 93.87 93.52 92.94 93.82

HSA [21] C1&C2 93.81 93.94 93.86 93.57 93.22 92.72 91.99 93.30

VNS [22] C1 94.93 95.19 94.99 94.71 94.33 94.04 93.53 94.53

FDA [23] C1 92.92 93.93 93.71 93.68 93.73 93.63 93.14 93.53

CLTRS [29] C1 95.05 95.39 95.45 95.18 94.96 94.80 94.26 95.01

C1&C2 94.50 94.67 94.74 94.41 94.05 93.83 93.15 94.19

HBMLS C1 94.92 95.48 95.69 95.53 95.44 95.38 95.00 95.35
C1&C2 94.43 94.87 95.06 94.89 94.68 94.53 93.96 94.63

Table 6
Results of different algorithms for BR8–BR15.

Algorithms Constraints BR8 BR9 BR10 BR11 BR12 BR13 BR14 BR15 Mean

HGA_BG [14] C1 89.73 89.06 88.4 87.53 86.94 86.25 85.55 85.23 87.34

PGA_GB [15] C1 90.26 89.5 88.73 87.87 87.18 86.7 85.81 85.48 87.69

GRASP1 [18] C1 90.26 89.50 88.73 87.87 87.18 86.70 85.81 85.48 87.69

A2 [11] C1 88.41 88.14 87.9 87.88 87.92 87.92 87.82 87.73 87.97

GRASP2 [19] C1 91.02 90.46 89.87 89.36 89.03 88.56 88.46 88.36 89.39

HSA [21] C1&C2 90.56 89.7 89.06 88.18 87.73 86.97 86.16 85.44 87.98

VNS [22] C1 92.78 92.19 91.92 91.46 91.2 91.11 90.64 90.38 91.46

FDA [23] C1 92.92 92.49 92.24 91.91 91.83 91.56 91.3 91.02 91.91

CLTRS [29] C1 93.74 93.51 93.14 92.90 92.79 92.49 92.46 92.42 92.93

C1&C2 92.27 91.49 90.79 90.02 89.51 88.87 88.19 87.57 89.84

HBMLS C1 94.66 94.30 94.11 93.87 93.67 93.45 93.34 93.14 93.82
C1&C2 93.27 92.60 92.05 91.46 90.91 90.43 89.80 89.24 91.22

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–2276 2275
optimal solution of the next layer, while selecting more than one
optimal solution for the next search may include the optimal
solution of the next layer with greater probability.
5. Conclusions

This paper proposes a very effective heuristic block-loading
algorithm for the container loading problem. This algorithm
introduces composite block and gives some limits, and presents
an efficient block selection algorithm based on multi-search to
evaluate the current state so that more appropriate blocks can be
selected for loading in each stage. The multi-layer search algo-
rithm evaluates blocks accuracy. Computational results on 1500
instances show that HBMLS outperforms the current best algo-
rithm for the problems with and without C2. Of course, due to the
complexity of loading problems and the inherent defects of
heuristic algorithms, HBMLS still has some shortcomings. For
example, it needs more computational time for large-scale pro-
blems. Therefore, future work is to further optimize it to improve
the calculation speed and apply it for different problems with
practical applications and additional constraints.
Acknowledgements

The authors would like to thank Prof. Bortfeldt for the CLTRS
programs. The authors would like to express their appreciation to
the reviewers for making valuable comments and suggestions to
the paper. Their comments have improved and enriched the
quality of the paper immensely. This work was supported by
the National Nature Science Foundation of China (Grant no.
60773126).
References

[1] Dyckhoff H, Finke U. Cutting and packing in production and distribution.
Heidelberg: Physica; 1992.

[2] Bischoff EE, Ratcliff BSW. Issues in the development of approaches to
container loading. Omega 1995;23:377–90.

[3] Scheithauer G. Algorithms for the container loading problem. In: Operations
Research Proceedings 1991, Berlin: Springer,; 1992. pp. 445–452.

[4] George JA, Robinson DF. A heuristic for packing boxes into a container.
Computers and Operations Research 1980;7:147–56.

[5] Bischoff EE, Marriott MD. A comparative evaluation of heuristics for container
loading. European Journal of Operational Research 1990;44:267–76.

[6] Bischoff EE, Janetz F, Ratcliff MSW. Loading pallets with non-identical items.
European Journal of Operational Research 1995;84:681–92.

[7] Bischoff EE. Three-dimensional packing of items with limited load bearing
strength. European Journal of Operational Research 2006;168:952–66.

[8] Lim A, Rodrigues B, Yang Y. 3-D container packing heuristics. Applied
Intelligence 2005;22:125–34.

[9] Juraitis M, Stonys T, Starinskas A, Jankauskas D, Rubliauskas D. A randomized
heuristic for the container loading problem: further investigations. Informa-
tion Technology and Control 2006;35(1):7–12.

[10] Huang W, He K. A new heuristic algorithm for cuboids packing with no
orientation constraints. Computers and Operations Research 2009;36(2):425–32.

[11] Huang W, He K. A caving degree approach for the single container loading
problem. European Journal of Operational Research 2009;196:93–101.

[12] Bortfeldt A, Gehring H. A tabu search algorithm for weakly heterogeneous
container loading problems. OR Spectrum 1998;20:237–50.

D. Zhang et al. / Computers & Operations Research 39 (2012) 2267–22762276
[13] Gehring H, Bortfeldt A. A genetic algorithm for solving the container loading
problem. International Transactions in Operational Research 1997;4:
401–18.

[14] Bortfeldt A, Gehring H. A hybrid genetic algorithm for the container loading
problem. European Journal of Operational Research 2001;131:143–61.

[15] Gehring H, Bortfeldt A. A parallel genetic algorithm for solving the container
loading problem. International Transactions in Operational Research
2002;9:497–511.

[16] Bortfeldt A, Gehring H, Mack D. A parallel tabu search algorithm for solving
the container loading problem. Parallel Computing 2003;29:641–62.

[17] Mack D, Bortfeldt A, Gehring H. A parallel hybrid local search algorithm for
the container loading problem. International Transactions in Operational
Research 2004;11:511–33.

[18] Moura A, Oliveira JF. A GRASP approach to the container-loading problem.
IEEE Intelligent Systems 2005;20:50–7.

[19] Parreño F, Alvarez-Valdes R, Oliveira JF, Tamarit JM. A maximal-space
algorithm for the container loading problem. INFORMS Journal on Computing
2007;20(3):412–22.

[20] Zhang DF, Wei LJ, Chen QS, Chen HW. A combinational heuristic algorithm for
the three-dimensional packing problem. Journal of software 2007;18(9):
2083–9.
[21] Zhang DF, Peng Y, Zhu WX, Chen HW. A hybrid simulated annealing
algorithm for the three-dimensional packing problem. Chinese Journal of
Computers 2009;32(11):2147–56.

[22] Parreño F, Alvarez-Valdes R, Oliveira JF, Tamarit JM. Neighborhood structures
for the container loading problem: a VNS implementation. Journal of
Heuristics 2010;16:1–22.

[23] He K, Huang W. An efficient placement heuristic for three-dimensional
rectangular packing. Computers & Operations Research 2011;38(1):227–33.

[24] Morabito R, Arenales M. An AND/OR-graph approach to the container loading
problem. International Transactions in Operational Research 1994;1:59–73.

[25] Eley M. Solving container loading problems by block arrangement. European
Journal of Operational Research 2002;141:393–409.

[26] Hifi M. Approximate algorithms for the container loading problem. Interna-
tional Transactions in Operational Research 2002;9(6):747–74.

[27] Pisinger D. Heuristics for the container loading problem. European Journal of
Operational Research 2002;141:143–53.

[28] Bortfeldt A, Mack D. A heuristic for the three-dimensional strip packing
problem. European Journal of Operational Research 2007;183(3):1267–79.

[29] Fanslau T, Bortfeldt A. A tree search algorithm for solving the container
loading problem. INFORMS Journal on Computing 2010;22:222–35.

[30] OR-Library, /http://people.brunel.ac.uk/~mastjjb/jeb/info.htmlS.

http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

	A heuristic block-loading algorithm based on multi-layer search for the container loading problem
	Introduction
	Literature review
	Heuristic block-loading algorithm based on multi-layer search
	Basic heuristic block-loading algorithm
	Generation of block
	Generation of feasible block list
	Block selection based on multi-layer search
	Partition and transfer of residual space

	Computational results
	Evaluation of composite block and multi-layer search
	Comparison with other algorithms

	Conclusions
	Acknowledgements
	References

