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Abstract The more-dimensional bin packing problem (BPP) considered here
requires packing a set of rectangular-shaped items into a minimum number of identical
rectangular-shaped bins. All items may be rotated and the guillotine cut constraint has
to be respected. A straightforward heuristic is presented that is based on a method for
the container loading problem following a wall-building approach and on a method
for the one-dimensional BPP. 1,800 new benchmark instances are introduced for the
two-dimensional and three-dimensional BPP. The instances include more than 1,500
items on average. Applied to these very large instances, the heuristic generates solu-
tions of acceptable quality in short computation times. Moreover, the influence of
different instance parameters on the solution quality is investigated by an extended
computational study.

Keywords Bin packing · Heuristics · Single bin-size bin packing problem ·
SBSBPP · Single stock-size cutting stock problem · SSSCSP

1 Introduction

This article deals with the bin packing problem in two and three spatial dimensions,
referred to hereafter as the “multi-dimensional BPP”. In the three-dimensional case
(3D-BPP) it can be defined as follows: Let J be a set of rectangular-shaped items
and let an infinite number of identical rectangular containers (or bins) be given. Each
item j of J is specified by its dimensions length l j , width w j and height h j ( j =
1, . . . , n, n = |J |). The containers have the common length L , width W and height H .

D. Mack (B) · A. Bortfeldt
Department of Information Systems, FernUniversität in Hagen, 58084 Hagen, Germany
e-mail: daniel.mack@fernuni-hagen.de

A. Bortfeldt
e-mail: andreas.bortfeldt@fernuni-hagen.de

123



338 D. Mack, A. Bortfeldt

The objective is to find a feasible arrangement of all items within a minimal number
of bins. Obviously, the two-dimensional BPP (2D-BPP) can be viewed as a special
case of the 3D-BPP. An instance of the multi-dimensional BPP can be denoted as a
tuple (L , W, H, J ).

An arrangement, also called packing plan, is considered as feasible if each item lies
completely within a container and is arranged parallel to its side walls. Furthermore,
no item must overlap with another item placed within the same container.

In the cutting and packing (C&P) area, a distinction is usually made between weakly
and strongly heterogeneous item sets. An item set is considered as weakly heteroge-
neous if it consists of only a few distinct item types, whereas strongly heterogeneous
item stocks have more distinct item types, but only a few individual items per type.
Two items are of the same type if they are congruent. In this article, both strongly and
weakly heterogeneous sets are dealt with. According to the typology for C&P prob-
lems proposed by Wäscher et al. (2007), the BPP is referred to as Single Stock-Size
Cutting Stock Problem (SSSCSP) or Single Bin-Size Bin Packing Problem (SBSBPP).

In the relevant literature the following constraints are commonly imposed:

(C1) Orientation constraint

While a rotation of the rectangular items by 90◦ is generally feasible, the orienta-
tion constraint fixes a specific orientation variant for each item, thus forbidding any
rotation.

(C2) Guillotine cut constraint

This constraint demands that all packed items are reproducible by a series of
guillotine cuts. A guillotine cut splits a block into two smaller blocks, where the
slice plane is parallel to one side of the initial block.

Regarding the constraints (C1) and (C2) Lodi et al. (1999a) introduce four possible
BPP subtypes:

RF: Items may be rotated by 90◦ (R), guillotine cut constraint not imposed (F);
RG: Items may be rotated by 90◦ (R), guillotine cut constraint is imposed (G);
OF: Orientation of items is fixed (O), guillotine cut constraint not imposed (F);
OG: Orientation of items is fixed (O), guillotine cut constraint is imposed (G).

Of course, a feasible solution for the subtype OG is also valid for the other three
subtypes and a feasible solution for subtype OF or RG is also a valid solution for
subtype RF.

The 3D-BPP occurs in practice when goods that are wrapped in rectangular boxes
have to be stowed into standard containers, trucks or railway wagons. Several practical
applications of the 2D-BPP are mentioned in Lodi et al. (1999a). Both the orientation
and the guillotine constraint often have to be observed in cutting problems, due to the
nature of the material surfaces (e.g. as a result of rolling) or the cutting technology.

Considering 2D and 3D BPP-instances with a very large number of items can be
justified as follows. On the one hand, large scale benchmark instances were introduced
for other C&P problems. As an example Mumford-Valenzuela et al. (2003), proposed
instances with up to 5,000 items for the two dimensional strip packing problem. On
the other hand, larger bin packing problems can be found in real life applications.

123
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One of the authors was involved in developing a software system for an Australian
steel producer. In this particular case, the bin packing problem occurred as a cutting
problem where ordered steel blocks of given dimensions were to be sawn out of larger
steel blocks of identical size. The software was designed to accept problems with
up to 5,000 order blocks. In the area of transportation, often more than 200 items
fit into a single standard container (e.g. household consignements, baggage, export
shipping etc.).

In this article a heuristic for the multi-dimensional BPP and the subtype RG is pro-
posed which may be applied to problems with 1,000 items and more. The following
section gives an overview of literature dealing with the multi-dimensional bin packing
problem. Section 3 describes the heuristic. In Sect. 4 new benchmark instances with
large items sets are introduced and the results of extensive tests are evaluated. Section 5
resumes the article.

2 Literature overview

The bin packing problem is NP-hard, regardless of its dimensionality. Therefore
heuristic approaches for the BPP dominate in the relevant literature, at least in the
multi-dimensional case. These approaches can be classified into constructive heu-
ristics (CH), improvement heuristics (IH) and, most popular in recent years, meta-
heuristics (cf. Glover and Kochenberger 2003). Metaheuristics include advanced local
search strategies such as Simulated Annealing (SA), Tabu Search (TS) or Guided Local
Search (GLS) and population-based approaches as genetic algorithms (GA). However,
other paradigms such as Constrained Programming (CP) for example are also viewed
as metaheuristic approaches. Branch and Bound (B&B) and related concepts (Tree
Search, TRS; Branch and Cut, B&C) are applied in exact, but also in heuristic algo-
rithms. Table 1 presents a representative sample of methods for the multi-dimensional
bin packing problem and its different subtypes.

For each algorithm in Table 1, the problem variant is given by the dimensionality,
the number of distinct container types (1 or “M”, “M” stands for “multiple”) and
the subtype addressed. In the case of multiple container types, the objective is not to
minimize the number of containers, but rather to minimize the overall shipping costs.
The method type is specified and exact algorithms are labelled as such. In the last
column, the maximal problem size in terms of number of items is given for which
results were reported. For an extensive bibliography for the Bin Packing Problem the
reader is referred to Coffman et al. (2004).

In the relevant literature relatively few publications deal with the multi-dimensional
bin packing problem. Algorithms are rare, especially for the three-dimensional BPP.
The problem size addressed by the exact, but also by most heuristic algorithms is
rather small, increasing to only 200 items. It can also be observed that the benchmark
instances often include large items compared to the container dimensions. As an exam-
ple, for the instances introduced by Ivancic et al. (1989), a single container may only
accommodate around 10 boxes. Several important practical situations are not covered
by those instances; one need only consider packing retail household appliances into a
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Table 1 Algorithms for multi-dimensional bin packing problems with rectangular items

Authors, source Dimension No. of cont.
types

Sub-
type

Method
type

Max. calculated
problem size

Bengtsson (1982) 2 1 RF IH 200

Berkey and Wang (1987) 2 1 OF CH 100

Ivancic et al. (1989) 3 M RF CH 180

El Bouri et al. (1994) 2 1 RF TRS 200

Bischoff and Ratcliff (1995) 3 1 RF CH 180

Martello and Vigo (1998) 2 1 OF B&B, exact 200

Lodi et al. (1998) 2 1 RG TS 164

Lodi et al. (1999a) 2 1 all TS 100

Lodi et al. (1999b) 2 1 OG TS 100

Martello et al. (2000) 3 1 OF B&B, exact 90

Terno et al. (2000) 3 1 RF B&B –

Bortfeldt (2000) 3 M RF CH, IH 180

Dell’Amico et al. (2002) 2 1 RF B&B, exact 100

Lodi et al. (2002) 3 1 OF TS 200

Faroe et al. (2003) 3 1 OF GLS 100

Eley (2003) 3 M RF TRS 180

Lodi et al. (2004) 3 1 RF TS 200

Pisinger and Sigurd (2007) 2 1 OF, OG CP, B&C, exact 100

Crainic et al. (2008) 2, 3 1 OF CH, IH 200

standard container. Furthermore, most algorithms are tested using either only weakly
or only strongly heterogeneous problem instances.

Given these arguments, it seems useful to conceive a heuristic capable of calculat-
ing problem instances of much greater size (1,000 items and more). Accordingly, new
large problem instances are needed. These instances should vary along with different
parameters, such as the average item size compared to the container size, in order
to study the influence of basically different instance types on the solution quality
empirically.

3 The heuristic for the multi-dimensional BPP

In the sequel, the heuristic is described for the 3D case. It consists of five modules
(see Fig. 1):

– 3CLH: an algorithm for the three dimensional container loading problem (CLP).
The CLP is defined as follows: Let a set J of rectangular items (boxes) and a
single container of length L , width W and height H be given. Consider the same
feasibility conditions and constraints concerning the placement of items as for the
multi-dimensional BPP. The objective is to find a feasible arrangement of a subset
of items in the container so that the packed volume is maximised. A CLP instance
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Fig. 1 Modular layout of the BPP heuristic

IC L can be denoted as a tuple (L , W, H, J ). Here, the algorithm proposed by
Pisinger (2002) is applied to solve CLP instances.

– 1BPH: an algorithm for solving the 1D-BPP. The heuristic of Bortfeldt (2005) is
used here (see also Bortfeldt (2007)).

– 3BP1S: a heuristic to generate a single solution for the 3D-BPP using a specific
parameter set.

– 3BPPO: a heuristic for further optimising a solution found with 3BP1S.
– BPHL: the main module of the 3D-BPP-heuristic (“H” stands for heuristic, “L”

for “Layer”).

Obviously, the 3D-heuristic is also applicable to 2D-problems since 2D-items (rect-
angular containers, packing pieces) can be considered as 3D-items with height (or
minimum dimension) 1. Each module will be specified in the following in greater
detail. No distinction will be made between 3D and 2D problems.

3.1 The CLP-algorithm (module 3CLH)

The CLP-heuristic by Pisinger (2002) follows a layer-building approach. A generated
packing plan consists of several vertical layers (see Fig. 2). These layers follow one
after another in the longitudinal direction of the container. Each layer is composed by
a rectangular block ll × W × H wherein several boxes are arranged. ll is the layer
depth. The volume utilisation of the layer is defined as the ratio of the total volume
of packed items and the layer volume while the volume utilisation of the container is
defined analogously. A layer consists in general of several horizontal and/or vertical
strips. A horizontal strip is formed by several items that are placed one after another
in the width direction without leaving gaps, while vertical strips are formed by items
being placed one upon the other (see Fig. 2).

The CLP-heuristic is devised as a two-level tree search algorithm, where branching
at the layer level and branching at the strip level are interlaced. With each branch-
ing at the layer level some new layer variants of different depths (ll) are constructed.
Item dimensions of greater size and frequently-occuring item dimensions are used as
appropriate layer depths. In order to limit the search effort, the number of layer depths
considered for the next branching is restricted by a parameter cut3. At the strip level,
the procedure is similar, and the number of strip widths used for the next branching
is limited by a parameter cut2. For any given layer depth and strip width an instance
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Fig. 2 Structure of a solution generated by 3CLH

of the one-dimensional knapsack problem (1D-CLP) remains to be solved and this is
done efficiently by an integrated 1D-CLP algorithm.

3.2 The 1D-BPP-algorithm (module 1BPH)

The 1D-BPP-algorithm is characterised here very briefly. A given 1D-BPP instance
is calculated using the well-known “First Fit Decreasing” (FFD) heuristic as well
as some stronger constructive and improvement heuristics based on FFD. The algo-
rithm stops as soon as an optimal solution is found, which is verified by different
lower bounds taken from the relevant literature. If no optimal solution has been found,
a B&B-method is applied, performing a bin-oriented branching scheme. Different
branching strategies are employed with regard to the selection of packing patterns
tried per branching step. These strategies are tailored to different instance types where
an instance type is characterised by the average relative item size. As an example, for
so called triplet instances for which the average relative item size amounts to exactly
one third of the bin size, a specific branching strategy is applied.

3.3 Generation of solutions for the 3D-BPP (module 3BP1S)

Figure 3 shows the pseudocode of module 3BP1S. The heuristic follows an intuitive
approach described, e.g., by Bischoff and Ratcliff (1995): a solution for the 3D-BPP
is determined by iteratively filling new bins using the algorithm 3CLH until all items
of J are loaded. The input parameter nbbest designates a previously-found minimal
number of bins for the given instance, cut2 and cut3 are parameters of the CLP-
heuristic described above. 3BP1S stops immediately without any new solution if it
turns out that nbbest cannot be improved. Note that the parameters cut2 and cut3 are
mainly influencing the search effort and the solution to be calculated.

After a new solution sb has been determined, it is assured that the layers are distrib-
uted in an optimal way among the bins. Generally, a redistribution of the layers could
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procedure 3BP1S (in: problem data L, W, H, J; parameters cut3, cut2,   
rafossnibfo.ontseb nbbest; out: 3D-BPP solution sb)  

{initialise} 
sb := ∅; {3D-BPP-solution}   
nb := 0; {no of loaded bins} 
R := J; {remaining items}   
VR := total volume of R;  
{find 3D-BPP-solution by iteratively loading single bins}  
while R ≠ ∅ do
 if /( )nb VR L W H nbbest+ ⋅ ⋅ ≥⎡ ⎤⎢ ⎥ then 

  set sb := ∅; break; {no new best solution can be found} 
 endif; 
 calc. sol. s for CLP-inst. ICL := (L, W, H, R) using 3CLH and cut3, cut2; 
 sb := sb ∪ s; {expand solution by a supplementary filled bin}   

nb := nb + 1; 
 update remaining items R and appropriate volume VR; 
endwhile; 
{optimize 3D-BPP solution by redistributing the layers}
if sb ≠ ∅ and R = ∅ then {a new solution sb has been found} 
 let {li} be the set of layer depths in solution sb; 
 if ii

l∑ ≤ (nb – 1)L then {no. of bins nb may possibly be improved} 

  calc. sol. s1 for the 1D-BPP inst. given by L and {li} using 1BPH; 
  if number of bins in solution s1 < nb then 
   redistribute the layers in sb according to s1; 
  endif; 
 endif; 
endif; 
end.

Fig. 3 Algorithm of heuristic 3BP1S

achieve a saving of at least one bin. Note that the loading of single bins by 3CLH is
done in a greedy fashion and this in fact can lead to a suboptimal result for the 3D-BPP
instance. Let {li } be the set of layer depths in solution sb. If it seems possible to save
a bin by redistributing layers, the 1D-BPP instance given by set {li } and bin length L
is solved by algorithm 1BPH. If the 1D-BPP solution contains a lower number of bins
compared to the solution sb calculated before, then the layers of sb are redistributed
according to the 1D-BPP solution in order to realise the bin saving.

3.4 Main module of the 3D-BPP-heuristic (module BPHL)

Figure 4 describes the main module of the 3D-BPP heuristic. Given a problem instance,
multiple solutions are generated by systematically altering the parameters cut3 and
cut2 of the integrated 3D-CLP algorithm. For a specific pair of values (cut3, cut2) two
solutions are generated by means of module 3BP1S and the best solution so far sbest is
updated if necessary. At the first call of 3BP1S, the progress direction of the layers is
set parallel to the container width W , i.e. the layers follow one after the other in direc-
tion of the container width (unlike the explanations in Sect. 3.1). At the second call
of 3BP1S, the progress direction of the layers is set parallel to the container length L .
The switch of progress direction is implemented by permuting container length and
container width when calling 3BP1S. An incumbent best number of bins nbbest is
passed to 3BP1S in order to shorten the search where possible (see Sect. 3.3).
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procedure BPHL (in: problem data L, W, H, J, parameters: cut3max, cut2max;
 out: best 3D-BPP-solution sbest)  

nbbest := |J|;{initial value}  
{generate solutions for different parameter sets}

for cut3 := 1 to cut3max by 1 do                        {no.  of branches at layer level} 
for cut2 := cut3 2  to cut2max by cut32 do    {no. of branches at strip level} 

 for sdir := 1 to 2 by 1 do               {progress direction of the layers} 
if sdir = 1 then

tes LL := W; WW := L; {progress dir. is W} 
else

tes LL := L; WW := W; {progress dir. is L} 
endif;  
call 3BP1S(LL, WW, H, J, cut3, cut2, nbbest, sb); 
if sb ≠ ∅ and no. of bins used in sb < nbbest then

sbest := sb; nbbest := no. of bins used in sbest; 
tsebrids  := sdir; 

endif; 
 endfor sdir; 

endfor cut2 ; 
endfor cut3 ;  

{call postoptimisation procedure with current best solution}  
call 3BPPO(L, W, H, J, cut3max, cut2max, sdirbest, sbest);  
end.

Fig. 4 Algorithm of the main module BPHL

BPHL is tailored to large problem instances with 1,000 or more items. In order to
determine an initial solution rapidly, the parameters are initially set to their minimal
values (cut3=1, cut2 =1). With the following calls, the parameters are incremented
iteratively and the search effort increases. Parameter cut3 is always incremented by 1,
whereas cut2 is raised by the amount cut32 per step. The search effort spent for a given
parameter set is restricted by a time limit t1. Finally, the best solution so far is further
processed by the heuristic 3BPPO. The time effort of this post processing is limited
by time limit t2.

3.5 Post processing of a 3D-BPP solution (module 3BPPO)

For each solution determined with heuristic 3BP1S, there is a unique progress direction
for the generated layers, given either by the container length or the container width. The
post processing heuristic 3BPPO aims at combining the two progress directions within
a single solution. Therefore, some layers of a given 3BP1S-solution are replaced with
new layers following the alternative progress direction. Figure 5 shows the different
steps of the post optimisation for a given example.

First, several layers with weakest volume utilisations are determined and removed
from the solution; in the example the four weakest layers lie in distinct bins. In step 2,
the remaining layers are redistributed among a minimal number of bins. The corre-
sponding 1D-BPP instance is solved by module 1BPH. In step 3, the heuristic checks
whether additional items can be stowed into the containers. If this is the case, the
remaining space is filled by algorithm 3CLH. The progress direction of the additional
layers runs orthogonally to the progress direction of the initial layers. In the fourth
and last step additional bins are opened and filled with the CLP-algorithm until the
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Fig. 5 Four steps of post optimisation for a given number of layers to be unloaded

complete item stock is packed. The progress direction of the new layers is chosen
orthogonally to the progress direction of the initial layers.

Figure 6 specifies the post optimisation in detail. In the main loop the variable k
designates the number of layers to be unloaded. k is incremented from 1 to nl−1,
where nl stands for the total number of layers in the input solution sb. For a given
value k, the four steps of Fig. 5 are executed.

At the beginning, the search effort is relatively small as the number of items to reload
is small. Effort grows continuously when k is incremented. The post optimisation is
stopped when time limit t2 is reached.

Heuristic 3BPPO is time consuming because of the iterative increase of resolved
layers. Therefore the post optimisation is only called once to process the formerly
determined best solution.

Finally, it is proven that the guillotine cut constraint is respected by the proposed
heuristic. The guillotine cut constraint is met at the layer level through the integrated
CLP-heuristic (cf. Fig. 2). A complete solution observes this constraint because the
layers can be isolated by cuts running parallel to the container sides. Furthermore, using
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procedure 3BPPO (in: problem data L, W, H, J, param. cut3, cut2,   
 progress direction sdir; inout: solution sb)  
if sdir = 1 then  LL := W; WW := L;     {progress dir. of sb is container width W } 
 else  LL := L; WW := W;     {progress dir. of sb is container length L} 
endif; 
sbold := sb;  
let (l1, l2,...,lnl) be the series of layer depths in sbold, sorted by ascending volume 
 utilisation; 
for k := 1 to nl–1 do
 {step 1: eliminate some layers}  
 unload the first k layers of sbold and
  set R := set of items in layers 1,...,k of sbold ; 
 {step 2: redistribute kept layers} 
 solve the 1D-BPP instance (LL, {lj | j = k+1,...,nl }) using 1BPH and
  let s1 be the solution including nb0 bins; 
 generate 3D-BPP partial solution sbnew by combining  
  layers k+1,...,nl of sbold in nb0 3D-bins according to solution s1;  
 sort the bins in sbnew by ascending free distance in progress dir. sdir;   
 {step 3: complete non-empty bins} 

for each bin ib in sbnew do
if free distance lfree(ib) > minimal item dimension in R then

  {generate layers in bin ib with progress direction orthogonal to sdir} 
  calculate solution s for CLP instance ICL = (WW, lfree(ib), H, R) using 

3CLH and parameters cut3, cut2; 
complete the arrangement in bin ib by arrangement s ;  

  remove items used by s from R; 
endif; 

 endfor;  
{step 4: fill additional bins with layers orthogonal to direction sdir} 

 call 3BP1S(WW, LL, H, R, cut3, cut2, no. of bins(sb) – nb0, sbr ); 
if solution sbr ≠ ∅ then

sbnew := sbnew ∪ sbr; 
if no. of bins(sbnew) < no. of bins(sb) then sb := sbnew; endif; 

 endif; 
endfor; 
end.

Fig. 6 Algorithm 3BPPO

alternative progress directions for layers does not violate the guillotine cut constraint
(see Fig. 5).

4 Numerical test

The heuristic BPHL was implemented in C and tested using a standard PC (1.86 GHz
Intel and 500 MB RAM). In the following the benchmark instances used for the test
are introduced before the test results are presented and analysed.

4.1 Problem instances

On the one hand, BPHL shall be applied to 740 well-known benchmark instances of
limited problem size (max. 200 items). On the other hand, 1,800 new BPP instances
with larger item stocks will be introduced.

Among the 740 problem instances from literature, 300 2D instances were proposed
by Berkey and Wang (1987); they are denoted here as BW instances. Another 200 2D
instances were introduced by Martello and Vigo (1998) (MV instances). The given
500 2D instances are grouped in 10 instance classes of 50 instances each. In each class
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the item numbers range between 20 and 100 items per instance. A detailed description
of these instances can also be found in, e.g., Lodi et al. (1999a).

240 3D instances were designed by Martello et al. (2000) (MPV instances) and they
are grouped in 6 classes having numbers 1, 4, 5, 6, 7 and 8; note that further original
classes (2, 3, 9) are usually not considered in the literature (cf. Faroe et al. 2003).
Each of the 6 classes comprises 40 instances with identical container dimensions, but
different item numbers (50, 100, 150, 200 items per problem).

In order to test the ability of BPHL to deal with very large item stocks, 1,800 new
BPP instances shall be derived from the well-known CLP benchmark instances pro-
posed by Bischoff and Ratcliff (1995) (short: BR). These BR-instances are grouped in
15 test cases with 100 instances each. All instances of any test case have the same num-
ber of distinct item types. The item sets of the test cases vary from weakly to strongly
heterogeneous. The bin dimensions always correspond to the internal dimensions of
a standard 20-foot-container.

The new benchmark instances should meet the following conditions:

– 2D and 3D-instances are to be provided.
– Only large instances are requested with approximately 1,000 items or more.
– Item sets with different average volumes (compared to the container volume)

should be offered.
– The item sets should vary from weakly to strongly heterogeneous.
– The material lower bound for the number of bins L0 (also called continuous lower

bound) should have a uniform value for greater subsets of instances in order to facil-
itate the comparison of results. The bound L0 is defined as �total item volume /
container volume�

The generation of problem instances is first described for the 3D-case:

Container size: Three container sizes are considered, where the container volume
represents 100, 25 and 15% of the volume of a 20-foot-container. The sizes are referred
to in the following as “100%”, “25%” and “15%”. All internal dimensions of the
20-foot-container are reduced proportionally for the variants “25%” and “15%”. The
item dimensions are adopted unchanged from the original instances. This ensures that
different scales of items are generated in comparison with the container size.

Item types: Two modes of item type selection (short: selection modes) are distin-
guished. In mode 1, all item types of the original BR instance are adopted to generate
one new BPP instance. In mode 2, all item types of 10 subsequent problem instances
are aggregated to a new instance (e.g., the item types of instances 1 to 10 of a test
case are taken for one BPP instance). By this the number of item types per problem is
multiplied by a factor 10, so that the instances created with selection mode 2 present
between 30 and 1,000 types of items and offer a much greater level of heterogeneity
compared to instances of selection mode 1.

Numbers of items: having determined the container and the item types, the numbers
of items of the different types are set in a way that the lower bound L0 will be: L0 =
10 for container variant 100%, L0 = 40 for container variant “25%” and L0 = 100 for
container variant “15%”. The numbers of items per type are determined at random.
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Table 2 Denomination of 12 new test cases for the BPP

Test cases (150 instances each) Container volume 100 (%) 25 (%) 15 (%)

L0 10 40 100

3D Selection mode 1 MB01 MB03 MB05

Selection mode 2 MB02 MB04 MB06

2D Selection mode 1 MB07 MB09 MB11

Selection mode 2 MB08 MB10 MB12

10 3D-BPP instances are generated for each combination of container size
(“100%”,“25%”,“15%”), mode of item type selection (1 or 2) and BR-test case (1
to 15). In total, 3×2×15×10=900 3D-BPP instances are created. 2D-instances are
generated in an analogous fashion. However, the container height and one dimension
of the original item types (selected at random) are set to 1. Again, 900 2D-instances are
generated in total. Table 2 proposes a denomination for the 12 new test cases with 150
instances each. Unlike the original BR-instances, a test case represents a specific com-
bination of dimensionality, mode of item type selection and container size. Depending
on the problem size, it can be stated that almost every instance (except of ten instances)
does include 1,000 or more items. The average number of items per problem instance
over the 1,800 instances is 1,566. 2D-instances present on average 1,646 rectangles,
3D-instances present on average 1,486 boxes. The smallest instance has 792, the larg-
est 4,232 items. The 1,800 BPP-instances can be downloaded from the website www.
fernuni-hagen.de/WINF (see area “Download”, File MB_BPP_instances.zip).

4.2 Test results

To compute the 740 benchmark instances from literature the heuristic BPHL was
parameterized as follows: t1=3s, t2=3s, cut3max=2, cut2max=8. An overall time
limit of 3 (1.86 GHz-) seconds was applied. Results for the 2D and 3D instances are
reported in Tables 3 and 4, respectively.

Both tables are designed in a similar manner:

– In the left part the computed instance sets are indicated by their dimension and
class name (BWi, MVi or MPVi). Additionally, the mean continuous lower bound
L0 is given per class.

– In the right part results for the heuristic BPHL and for some other methods from
literature are presented. Only mean values over all instances of a class are given;
nb means the number of required bins while nbrel stands for the ratio nb/L0. For
each compared method the addressed BPP type (OF, RG, cf. Sect. 1) is indicated.
The time limit (tl) used is given where applicable and the types of the compared
methods are also indicated (TS, GLS etc.).

Taking the 2D instances the method BPHL achieves slightly better results than the
method(s) from Lodi et al. (1998) that address the same BPP type RG. The cho-
sen time limit of 3 s shows the speed of the proposed heuristic. In average, the best
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Table 3 Test results of heuristic BPHL for 500 2D benchmark problems

Dim Test class L0 Lodi et al. (1998) BPHL

RG RG

FCRG UBF TS

nbrel nbrel nbrel nb nbrel

2D BW01 18.54 1.09 1.09 1.07 19.56 1.06

BW02 2.48 1.04 1.06 1.04 1.50 1.01

BW03 12.58 1.19 1.19 1.14 14.02 1.12

BW04 2.38 1.05 1.07 1.05 2.44 1.02

BW05 15.72 1.15 1.15 1.13 17.60 1.12

BW06 2.16 1.10 1.10 1.10 2.20 1.03

Average BW 8.98 1.10 1.11 1.09 9.72 1.06

2D MV07 14.38 1.18 1.18 1.16 15.68 1.10

MV08 14.42 1.17 1.17 1.17 15.64 1.09

MV09 27.42 1.54 1.54 1.54 42.42 1.54

MV10 9.52 1.09 1.09 1.08 10.20 1.08

Average MV 16.44 1.25 1.25 1.24 20.99 1.20

Average BW/MV 11.96 1.16 1.17 1.15 14.23 1.12

Table 4 Test results of heuristic BPHL for 240 3D benchmark problems

Dim Test class L0(RG) Lodi et al. (2002) Faroe et al. (2003) BPHL

OF OF RG

TS GLS

tl = 60 tl = 150 tl = 1, 000 tl = 60 tl = 150 tl = 1, 000 tl = 3

nb nb nb nb nb nb nb

3D MPV1 23.78 32.43 32.23 31.98 32.65 32.35 32.08 28.88

MPV4 38.73 73.50 73.50 73.50 73.85 73.75 73.55 73.30

MPV5 14.00 18.05 18.00 17.85 17.98 17.80 17.70 17.45

MPV6 21.20 24.28 24.10 24.03 24.28 24.08 24.00 23.20

MPV7 11.93 15.30 15.18 15.00 15.10 14.90 14.75 14.55

MPV8 16.45 20.98 20.93 20.65 20.80 20.58 20.48 19.83

Average 21.01 30.75 30.65 30.50 30.78 30.58 30.43 29.53

BPHL-solution was reached after only 0.1 s. From Table 4 it can be stated that BPHL
achieves slightly better bin numbers than the compared metaheuristics from other
authors. However, a direct comparison is not possible, as these methods consider fixed
orientations of all items (BPP type OF) while BPHL allows rotating the items. There-
fore, this comparison should be interpreted with care. However, the time limit of 3 s
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Table 5 Test results of heuristic BPHL for 1,800 new benchmark problems (part 1)

Dim Test case L0 BPHL BPHL-

nb (bins) gap (%) vutil (%) n_opt n_opt (%) t_tot (s) nb (bins) gap (%) vutil (%)

3D MB01 10 11.0 10.40 86.33 11 7.3 125.5 11.1 10.87 85.97

MB02 10.7 6.67 88.99 50 33.3 99.1 10.7 7.13 88.60

MB03 40 46.9 17.17 84.29 0 0.0 101.2 47.8 19.52 82.63

MB04 44.0 10.10 89.71 0 0.0 97.1 45.1 12.68 87.65

MB05 100 130.4 30.41 76.33 0 0.0 123.2 133.9 33.86 74.37

MB06 122.1 22.11 81.51 0 0.0 122.6 124.4 24.38 80.02

Average 3D – 16.14 84.53 – 6.8 111.5 – 18.07 83.21

2D MB07 10 10.2 2.00 93.28 120 80.0 26.7 10.2 2.00 93.28

MB08 10.2 1.53 93.40 127 84.7 22.5 10.2 1.73 93.21

MB09 40 41.4 3.53 95.38 4 2.7 118.1 41.5 3.87 95.07

MB10 40.9 2.17 96.61 27 18.0 106.5 41.0 2.42 96.38

MB11 100 111.1 11.07 89.57 0 0.0 122.5 111.9 11.87 88.92

MB12 104.7 4.71 95.03 0 0.0 122.9 105.4 5.38 94.43

Average 2D – 4.17 93.88 – 30.9 86.5 – 4.54 93.55

Average – 10.16 89.20 – 18.8 99.0 – 11.31 88.38

applied to BPHL is very low, and the best BPHL results are reached on average after
only 0.6 s, which again proves the efficiency of the proposed approach.

For the new benchmark instances introduced above, all test results were calcu-
lated using the following parameter set that has been extracted from a smaller pretest:
t1 = 60 s, t2 = 60 s, cut3max =4, cut2max=8. Tables 5 and 6 summarise the results
of the heuristic for all 1,800 problem instances:

– Each row represents average values over all 150 instances of the respective test
case (cf. 4.1).

– The three first columns indicate the dimensionality, the name of the test case and
the constant value of L0.

– “BPHL” stands for the full variant of the heuristic including post optimisation,
whereas “BPHL-” represents the reduced variant without post optimisation.

– The average number of required bins (nb), the relative deviation from the lower
bound gap (given by (nb-L0)/L0 in %) and the average volume utilisation of the
bins vutil (in %) are indicated per test case for both variants of the heuristic. For
the full version BPHL, the number and percentage of instances (n_opt) are shown,
for which an optimal solution with L0 bins was reached. The total calculation time
(t_tot) is specified in (1.86 GHz-) seconds.

– The columns “Effects of 3BPPO” resume the differences of the results between
BPHL und BPHL-. In addition, n_i1 gives the number of instances per test case
where at least one bin was saved by post optimisation (3BPPO). Note that negative
signs in columns nb and gap indicate improved results.
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Table 6 Test results of heuristic BPHL for 1,800 new benchmark problems (part 2)

Dim Test case L0 Effects of 3BPPO Effects of 1BPH

nb (bins) gap (%) vutil (%) n_i1 t_1BPH (s) t_1BPH (%) n_i2

3D MB01 10 −0.05 −0.47 0.36 7 0.9 0.7 3

MB02 −0.05 −0.47 0.39 7 1.2 1.2 0

MB03 40 −0.94 −2.35 1.66 97 2.2 2.2 13

MB04 −1.03 −2.58 2.06 137 1.9 1.9 0

MB05 100 −3.45 −3.45 1.97 132 3.2 2.6 12

MB06 −2.27 −2.27 1.49 147 2.6 2.1 6

Average 3D −1.30 −1.93 1.32 87.8 2.0 1.8 5.7

2D MB07 10 0.00 0.00 0.00 0 0.1 0.5 2

MB08 −0.02 −0.20 0.18 3 0.1 0.6 0

MB09 40 −0.13 −0.33 0.31 16 2.3 1.9 21

MB10 −0.10 −0.25 0.24 15 4.2 3.9 11

MB11 100 −0.80 −0.80 0.64 78 1.4 1.1 23

MB12 −0.67 −0.67 0.60 83 1.2 1.0 10

Average 2D −0.29 −0.37 0.33 32.5 1.5 1.5 11.2

Average −0.79 −1.15 0.82 60.2 1.8 1.7 8.4

– The columns “Effects of 1BPH” indicate the total calculation time of module 1BPH
as an absolute value (seconds) and as a percentage (% of the total calculation time).
Furthermore, n_i2 gives the number of instances per test case where 1BPH leads
to a bin reduction.

The test results are analysed under three aspects. Firstly, the overall performance of the
heuristic is evaluated. Secondly, some of the components of the heuristic are assessed
separately. Thirdly, the relation between the instance parameters and the yielded solu-
tion quality is investigated.

For the 2D-instances good results were achieved as the average volume utilisation
of approximately 94% and the average gap to the rather weak lower bound L0 of ca.
4.2% reveal. Nearly one in three instances was solved to proven optimality while the
percentage of (globally) optimal solutions lies over 80% for the 2D-instances with the
largest container size “100%” (test cases MB07, MB08).

For the 3D-instances the results provide a more differentiated picture. Again, for
the 3D-instances with non-reduced 20-foot-containers (test cases MB01, MB02) a sat-
isfactory solution quality was reached since the optimum is missed on average by one
bin or less and at least 20% of these 300 instances were solved to optimality. However,
much larger gap values are observed for the smaller “25%” and “15%” container sizes
(see above for definition). These results also appear plausible to a certain extent if one
bears in mind that as a consequence of the container reduction the items become more
and more “bulky”. Moreover, the volume utilisation is certainly negatively affected by
the fact that the heuristic respects the guillotine cutting constraint (C2) in any case.
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Search history for instance MB06_015
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Fig. 7 Search history of BPHL for the instance MB06_015

If the calculation times are compared to those reported for BPP methods in the
relevant literature (e.g., Faroe et al. 2003), it can be stated that the time effort spent
with heuristic BPHL is rather small. All in all, the heuristic BPHL seems to be capable
of producing solutions of acceptable quality for large scale 2D and 3D bin packing
instances with 1,000 or more items in short calculation time of few minutes.

Module 1BPH aims to reduce the number of bins by a redistribution of layers. In
101 of the 1,800 instances (5.6%), this measure is successful at least once during the
search process. The effort is very small with 1.8 s per instance (1.7% of the average
calculation time).

The post processing module 3BPPO reduces the gap to bound L0 by 1.15%-
points on average and enhances the volume utilisation by 0.82%-points over all
1,800 problems. The post processing takes 40 to 60 s per instance, so that an omis-
sion of post processing can reduce the calculation time by nearly 50% to about
60 s without affecting the solution quality significantly. This underlines the capa-
bility of BPHL to produce acceptable results for large scale problems in a very short
time.

Figure 7 shows the search progress for instance MB06_015. After a few seconds,
an initial solution with 133 bins is determined, which can be improved rapidly by
a redistribution of layers using module 1BPH. During the first 60 s the parameters
cut2 and cut3 are incremented successively and a solution with 128 bins is found.
After 60 s, the post-processing iteratively unloads the weakest layers and creates
layers in the alternative progress direction, achieving a decrease to 122 bins after
105 s.

Finally, the influence of the instance parameters to the solution quality is analysed.
For 2D-instances, the determined volume utilisations are much higher on average
than for the 3D-instances and consequently the L0 gaps are lower. This is in line with
the results reported in the relevant literature: good 2D-algorithms often yield volume
utilisations of 98% and more, whereas reported filling rates for 3D-algorithms are
generally significantly lower. This seems plausible, as for each additional dimension
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it becomes more difficult to avoid holes in the packing plan, particularly if supple-
mentary geometric constraints are to be respected.

As indicated above, a clear correlation can also be observed between the averaged
relative item sizes (relative to container size) and the average gap to the L0 bound. As
already explained this trend seems plausible since for increasing relative item sizes
the items become more and more “bulky” thus requiring a larger number of bins.
The modules for layer reallocation (1BPH) and post optimisation (3BPPO) are most
successful at problems with higher relative item sizes.

Finally, the results for instances generated with mode 2 of item type selection are
superior on average to the corresponding results for instances of selection mode 1 (cf.
Sect. 4.1). The heterogeneity of item sets is much higher for selection mode 2. So this
is not an intuitive result, as CLP-algorithms generally yield higher volume utilisations
for problem instances of lower heterogeneity (cf., e.g., Moura and Oliveira 2005). The
heterogenity of item sets does affect the achieved volume utilisation at least in two
ways. On the one hand, a greater number of items per type allows for building compact
gapless arrangements of items, i.e. less heterogeneous box sets are advantageous in
this regard. On the other hand, a larger heterogeneity of items yields a greater richness
of packing patterns. A possible explanation for the observed trend could be that the
second effect dominates the first one for the given instances. In fact, it can be observed
that even for problems of selection type 1, there are often not enough items per type to
build larger gapless arrangements. Of course, this reasoning has to be verified again
after further results are available for the new benchmark instances.

5 Summary

This article presents a heuristic for the bin packing problem (BPP) in two and three spa-
tial dimensions with a single container type and rectangular shaped packing pieces.
The heuristic is based upon a method for the 3D-container loading problem (CLP)
following a layer building approach and an algorithm for the one-dimensional BPP.
The proposed heuristic can be characterised as an improvement heuristic. In order
to prove the effectiveness of the algorithm for large scale problem instances, 1,800
new benchmark instances with more than 1,500 items on average were introduced.
The dimensionality, the relative size of the packing pieces and the heterogeneity of
the item sets are varied systematically. The test showed the capability of the heuristic
of calculating solutions of generally acceptable quality for large scale instances in
short computation times of one or two minutes. Moreover, competitive results could
be achieved for 740 well-known 2D and 3D benchmark instances of smaller size (up
to 200 items) in less than 1 s. To the best knowledge of the authors multi-dimensional
bin packing problems of this extreme size have not been dealt with in the relevant liter-
ature so far. An empirical study is analysing the dependency of the solution quality on
instance features as average item size and heterogeneity of item sets. The consideration
of further packing constraints remains a subject for further research.
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