
Three-dimensional bin packing problem with variable bin
height

Author

Wu, Yong, Li, Wenkai, Goh, Mark, de Souza, Robert

Published

2010

Journal Title

European Journal of Operational Research

DOI 

https://doi.org/10.1016/j.ejor.2009.05.040

Copyright Statement

© 2010 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance
with the copyright policy of the publisher. Please refer to the journal's website for access to the
definitive, published version.

Downloaded from

http://hdl.handle.net/10072/34843

Griffith Research Online

https://research-repository.griffith.edu.au



Three Dimensional Bin Packing Problem with
Variable Bin Height

Yong Wu a,b,∗, Wenkai Li b, Mark Goh b,c, Robert de Souza b

aInstitute for Logistics and Supply Chain Management, Victoria University, PO Box
14428, VIC 8001 Australia

bThe Logistics Institute – Asia Pacific, National University of Singapore, Block E3A Level
3, 7 Engineering Drive 1, Singapore 117574.

cNUS Business School, National University of Singapore, 1 Business Link, Singapore
117592

Abstract

This paper studies a variant of the three-dimensional bin packing problem (3D-BPP), where
the bin height can be adjusted to the cartons it packs. The bins and cartons to be packed
are assumed rectangular in shape. The cartons are allowed to be rotated into any one of the
six positions that keep the carton edges parallel to the bin edges. This greatly increases the
difficulty of finding a good solution since the search space expands significantly comparing
to the 3D-BPP where the cartons have fixed orientations. A mathematical (mixed integer
programming) approach is modified based on Chen et al. (1995) and numerical experiments
indicate that the mathematical approach is not suitable for the variable bin height 3D-BPP.
A special bin packing algorithm based on packing index is designed to utilize the special
problem feature and is used as a building block for a genetic algorithm designed for the
3D-BPP. The paper also investigates the situation where more than one type of bin are
used and provides a heuristic for packing a batch of cartons using the genetic algorithm.
Numerical experiments show that our proposed method yields quick and satisfactory results
when benchmarked against the actual packing practice and the MIP model with the latest
version of CPLEX.
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1 Introduction

Packing cartons into a bin is an important material handling activity in the manu-
facturing and distribution industries. A bin is defined in this paper as a rectangular
box used to hold smaller cartons. The cartons can be any rectangular stackable ob-
jects with different dimensions which can hold all kinds of goods and products for
easy handling.

We assume that all cartons can be freely rotated and placed into the bin at one
of the six positions that keep the carton edges parallel to the bin edges. It is also
assumed, without loss of generality, that all the carton dimension data are positive
values satisfying the only constraint that each carton can be placed into the bin in
at least one of the six positions. No further restriction is present: the cartons need
not to be packed in layers, and we do not impose the so-called guillotine constraint,
which requires that the patterns be such that the items can be obtained by sequential
face-to-face cuts parallel to the faces of the bin.

This paper investigates a unique variant of three-dimensional bin packing problem
(3D-BPP). There are more than one kind of carton to be used and the bin height
can be trimmed to fit the contents of the bin. Therefore, the actual height of each
bin varies. The variable size bin packing problem (VS-BPP) contains the classical
3D-BPP, where all the bins have the same capacity and cost, as a particular case.
The 3D-BPP is an NP-hard problem in a strong sense (Martello et al., 2000). The
flexibility in bin height poses a greater challenge in providing quality solutions in
a sense that unlike the traditional 3D-BPP where only the number of bins used
needs to be optimized, the VS-BPP needs to search for the minimum overall vol-
ume for all bins. The flexibility of carton orientation also expands the search space
significantly and hence increases the difficulty of finding optimal solutions.

The rest of the paper is structured as follows: The relevant literature is given in
Section 2. Section 3 presents the mathematical model which aims to solve the sin-
gle bin packing problem and some CPLEX results are reported. Sections 4 and
5 introduce the genetic algorithm for single and multiple bin packing problems,
respectively. Section 6 concludes the paper.

2 Literature Review

Chen et al. (1995) provide a mixed integer programming formulation to solve the
3D-BPP without orientation restriction. Due to the strong NP-hardness of the prob-
lem, the MIP model can only solve instances where a few cartons to be packed
to optimality. Recently, Puchinger and Raidl (2007) consider the two-dimensional
BPP, where a new integer linear programming formulation is proposed and solved
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using CPLEX.

Most research focus on the BPP where identical bins are used and all the cartons
have fixed orientation. For instance, Martello et al. (2000) and den Boef et al. (2005)
present an exact algorithm for filling a single bin and discussed the lower bounds for
the 3D-BPP. Martello et al. (2007) present an algorithm to solve moderately large
instances to optimality for the general 3D-BPP and its robot-packable variant.

Due to the strong NP-hardness of the 3D-BPP, heuristics are often used and the
carton orientation constraint normally can be relaxed. George and Robinson (1980)
present a wall-building approach heuristic without restrictions on the carton orien-
tation for identical containers. Bischoff et al. (1995) propose a pallet loading heuris-
tic for non-identical cartons where the stability of the pallet is considered. Pisinger
(2002) offers a heuristic based on the wall-building approach, where strips and lay-
ers are created so that the 3D-BPP can be decomposed into smaller sub-problems.
Baltacioǧlu et al. (2006) develop a new heuristic algorithm using rules to mimic
human intelligence to solve the 3D-BPP. Bischoff and Marriott (1990) evaluate a
number of heuristic variants for determining the efficient packing patterns in load-
ing freight containers with rectangular items. George (1996) investigates the case
of multiple container loading using the pipe packing as a case study. Faroe et al.
(2003) provide a heuristic for packing cartons into a minimum number of identical
containers based on guided local search, however, no carton rotation is allowed.

Genetic algorithms (Goldberg, 1989; Michalewicz, 1994) and tabu search are often
used as the building blocks for heuristics to solve the 3D-BPP. For instance, Hop-
per and Turton (2001) investigate different heuristics for two dimensional packing
problem; Puchinger et al. (2004) use genetic algorithms to solve a two dimensional
glass cutting problem; Zhang et al. (2007) propose a heuristic algorithm using tabu
search in combination with a bin-loading algorithm to solve the generic 3D-BPP;
Gehring and Bortfeldt (1997) present a genetic algorithm for loading strongly het-
erogeneous sets of cartons into a single container. More recently, Crainic et al.
(2008) introduce a two-level tabu search where the first level aims to reduce the
number of bins and the second optimizes the packing of the bins for cartons with
fixed orientations. Egeblad and Pisinger (2009) examine two and three-dimensional
knapsack packing problem using simulated annealing. Lodi et al. (2002) provide a
tabu search framework by exploiting a constructive heuristic to evaluate the neigh-
borhood where the carton orientation is fixed.

Although the techniques for the BPP with identical bins can be adapted to solve the
VS-BPP in a trial and error manner, research specific to the VS-BPP is relatively
scarce. Among them, Alves and de Carvalho (2007) study column generation for
the one-dimensional VS-BPP; Correia et al. (2008) propose a discretized model
formulation based on a straightforward integer programming formulation solving
optimally for the one-dimensional VS-BPP.
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3 Single bin packing: Mathematical approach

3.1 Formulation

Chen et al. (1995) provide an analytical model to formulate the general container
loading problem, where multiple containers can be used, into a 0-1 MIP model. We
adopt the approach in Chen et al. (1995) and modify the mathematical model into
a single bin packing problem with variable bin height. Although the multiple bin
VS-BPP can be formulated similarly, we skip this model considering the fact that
even the single bin VS-BPP problem is already NP-Hard.

The following variables are introduced for the mathematical formulation.

(li, wi, hi): parameters indicating the length, width, and height of carton i.

(L, W, H̃): length, width and height of the bin to be loaded, where H̃ indicates that
the bin height can be adjusted.

(xi, yi, zi): continuous variables for coordinates of carton i’s left-bottom-behind
corner.

Xli , Zli , Ywi
, Zhi

: binary variables indicating whether the length direction of carton
i is parallel to the bin’s X and Z axes, the width direction is parallel to the Y
axis, or the height direction is parallel to the Z axis, respectively, to determine the
orientation of carton i.

aij, bij, cij: binary variables defining the relative placement of carton i to carton j:
variables will be 1 if carton i is in front of, to the right of, or on top of carton j,
respectively; otherwise, 0.

M : a large enough number.

The objective is to minimize the variable bin height H̃ , i.e.

min H̃

The constraints are as follows:

xi + liXli + wi(Zli − Ywi
+ Zhi

) + hi(1−Xli − Zli + Ywi
− Zhi

)

6 xj + M(1− aij), i 6= j
(1a)

yi + wiYwi
+ li(1−Xli − Zli) + hi(Xli + Zli − Ywi

)

6 yj + M(1− bij), i 6= j
(1b)

zi + hiZhi
+ wi(1− Zli − Zhi

) + liZli 6 zj + M(1− cij), i 6= j (1c)
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xi + liXli + wi(Zli − Ywi
+ Zhi

) + hi(1−Xli − Zli + Ywi
− Zhi

) 6 L (2a)

yi + wiYwi
+ li(1−Xli − Zli) + hi(Xli + Zli − Ywi

) 6 W (2b)

zi + hiZhi
+ wi(1− Zli − Zhi

) + liZli 6 H̃; (2c)

aij + aji + bij + bji + cij + cji > 1, i 6= j (3)

Xli + Zli 6 1 (4a)

Zli + Zhi
6 1 (4b)

Zli − Ywi
+ Zhi

6 1 (4c)

Zli − Ywi
+ Zhi

> 0 (4d)

1−Xli − Zli + Ywi
− Zhi

6 1 (4e)

1−Xli − Zli + Ywi
− Zhi

> 0 (4f)

Xli + Zli − Ywi
6 1 (4g)

Xli + Zli − Ywi
> 0 (4h)

Constraints (1) ensure that any two cartons i and j do not overlap with each other.
Constraints (2) keep all cartons within the bin dimension. Xli , Zli , Ywi

and Zhi
are

used to calculate the respective mappings of carton length, width and height to the
corresponding bin’s X , Y and Z axes. Constraint (3) limits the relative position
of any two cartons i and j. Constraints (4) ensure that the binary variables which
determine the carton position are properly controlled to reflect practical positions.

3.2 MIP results

The above mathematical model was coded in GAMS using CPLEX 11.0, running
on a 2.2 GHz Dual Core Pentium processor with 3GB RAM. The CPLEX was
allowed to run for two hours, and the best bin height available was reported as the
results of the mathematical model. The status of each run was also reported, i.e.,
proven optimal solution or terminated with time limit.

There are two types of bins used: small and big. The small bin has a gross planar
dimension of 82×60 (unit length is centimeter), with usable dimensions of 78×57;
the big bin has a gross planar dimension of 120 × 100, with usable dimensions of
116.5 × 97. The difference between the gross and usable dimension is for shrink
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Table 1
Best available solution obtained by CPLEX in 2 hours for small bin cases

Case Num of Ctn Actual MIP Imprv (%) Sol. Found T (s) Status

SM01 8 91 80 12.09 153 Proven optimal

SM02 8 56 37 33.93 547 Proven optimal

SM03 9 69 47 31.88 1 Proven optimal

SM04 9 91 82 9.89 899 Time out

SM05 10 56 52 7.14 734 Proven optimal

SM06 12 53 38 28.30 285 Proven optimal

SM07 17 70 62 11.43 72 Time out

SM08 17 91 71 21.98 7,114 Time out

SM09 19 71 62 12.68 104 Time out

SM10 21 85 62 27.06 6,974 Time out

wrapping. Both small and big bins can pack up to 95cm high while in actual op-
eration the height is trimmed to fit the contents of the bin. There is an additional
height of 15cm for both a cushion layer (to protect the cartons) and a ‘pallet leg’ (to
load/unload the bins by forklifts). Therefore, the maximum gross height for bins is
110cm. The cushion layer and the ‘pallet leg’ need not to be considered for single
bin packing; but for multiple bins, they need to be taken into account since with
proper choice of bins, the volume they occupy can be minimized. Ten test cases
of the small bin and 27 cases of the big bin were collected from the actual opera-
tion of a large company where the operators manually decide on how cartons are
placed in the bin based on a rule of thumb and their own packing experience. The
test cases are moderate heterogeneous: there are 10 types of cartons to be packed,
and occasionally there are cartons with customized sizes used. The biggest carton
has a dimension of 63.1 × 56.4 × 46.4 and the smallest carton has a dimension of
33× 21× 4.

Tables 1 and 2 report the number of cartons packed in each bin, the actual heights
from the actual operations, the results of the MIP model, the improvement of the
MIP model against the actual operations, the time at which the best solution is
found, and solver status for small bin and big bin cases, respectively. The actual
heights were taken from the company for benchmarking purposes. All test cases
are sorted in ascending order of the number of cartons to be packed in each table.
It can be observed that CPLEX cannot find optimal solution except for a few cases
within the time limit given for its runs. For cases with more than 12 cartons to
be packed, CPLEX reports ‘time out’. However, CPLEX is able to provide better
solutions for all small bin cases and most of the big bin cases except BM18, BM26
and BM27, where more than 30 cartons need to be packed. For certain cases, the
improvement is quite significant. As the number of cartons to be packed goes up,
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Table 2
Best available solution obtained by CPLEX in 2 hours for big bin cases

Case Num of Ctn Actual MIP Imprv (%) Sol. Found T (s) Status

BM01 5 91 84.1 7.58 3 Proven optimal

BM02 11 91 83.1 8.68 146 Time out

BM03 12 45 32 28.89 368 Proven optimal

BM04 13 91 77.4 14.95 4,406 Time out

BM05 15 91 79 13.19 6,490 Time out

BM06 16 67 40 40.30 168 Time out

BM07 21 48 40 16.67 377 Time out

BM08 22 59 53 10.17 1,588 Time out

BM09 23 94 82 12.77 485 Time out

BM10 23 91 63.1 30.66 1,059 Time out

BM11 25 91 78 14.29 1,190 Time out

BM12 26 94 68 27.66 167 Time out

BM13 27 83 78 6.02 6,490 Time out

BM14 28 95 88.4 6.95 5,648 Time out

BM15 29 91 87 4.40 6,516 Time out

BM16 29 63 52 17.46 6,697 Time out

BM17 29 91 88.4 2.86 7,160 Time out

BM18 30 70 73.4 −4.86 6,509 Time out

BM19 30 94 79 15.96 1,313 Time out

BM20 30 94 87 7.45 6,660 Time out

BM21 30 95 87 8.42 6,551 Time out

BM22 31 91 87 4.40 6,632 Time out

BM23 33 95 93.4 1.68 6,094 Time out

BM24 35 91 89 2.20 7,140 Time out

BM25 36 94 79 15.96 6,880 Time out

BM26 38 91 97 −6.59 7,110 Time out

BM27 40 91 109 −19.78 6,528 Time out
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the time required to find good solutions normally increases.

The numerical experiments indicate that for bin packing problem in the company,
CPLEX can be used for non-real-time solutions. However, CPLEX needs signifi-
cant amount of computational time to generate a reasonably good result and this
makes it unsuitable for guiding on site operations. Hence, heuristics are needed if
quality and fast solutions are required.

4 Single bin packing: Genetic algorithms approach

Genetic algorithms (GA) are now widely applied in many fields such as computer
science, bio-informatics, engineering, economics and operations research due to its
easy implementation and good quality in providing solutions to difficult problems.
We propose a GA for the VS-BPP and design a special routine for GA fitness
evaluation, i.e., single bin packing based on packing index.

4.1 Representation

The GA chromosome needs to consider two factors: the order of cartons to be
packed and the carton rotation positions. All cartons are first sorted in volumetric
descending order and numbered. The rotation positions are represented by numbers
from 1 to 6 to indicate the six positions a carton can be placed. A sequence of pairs
of carton numbers and carton positions forms a GA chromosome.

4.2 Initial population

The initial population is generated by fixing the volumetric order of cartons while
randomly assign rotation positions to cartons for each chromosome. Since the car-
tons are sorted in terms of their volume, we have Vc1 > Vc2 · · · > Vcn , where Vci

is
the volume of carton i. Two possible initial chromosomes could be:

1’2 2’3 3’1 4’5 5’2 · · ·

1’5 2’1 3’3 4’2 5’6 · · ·

The first half of each gene represents the carton number while the second half
shows the rotation position. This is to utilize the feature of the first fit decreasing
bin-packing heuristic algorithm to ensure good initial solutions can be generated
(Dósa, 2007).
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4.3 Reproduction

The reproduction is based on roulette wheel selection, which enables better chro-
mosomes have higher chance to generate offsprings. We also applies the niche
mechanism during reproduction: the best solution found so far is copied into the
reproduction pool and replace 10% of the the total chromosomes. This not only
ensures that the fitter genes stay in the evolutionary process, but also provides a
chance to exploit the potential out of the best solution found during the evolution.

4.4 Crossover

The crossover is one-point crossover, a random location is selected for two parents
and the two parts after the crossover point of the two parents are switched over to
form two children. In this way, the order of cartons to be packed stays relatively
stable since the order plays an important role in bin packing. If the newly formed
children are not feasible due to some cartons appear in the children twice while
some do not appear at all, the children need to be repaired.

Two repairing schemes are proposed: sequential repair and random repair. Sequen-
tial repair first identifies the missing bits and the duplicated bits in a chromosome
and sorts them according to their carton numbers. Then it replaces the first du-
plicated bit with the first missing bit, the second duplicated bit with the second
missing bit until all duplicated bits are replaced by the missing bits. Random repair
creates one duplicated bit pool and one missing bit pool and replace the duplicated
bit randomly within the missing bit pool. Preliminary results indicate that the ran-
dom repair outperforms the sequential repair and is therefore used in the subsequent
numerical tests.

4.5 Mutation

There are two kinds of mutation here: sequence mutation and position mutation.
Sequence mutation selects two bits in a chromosome and switch them to form a
new one. For position mutation, several bits are picked in the chromosome and are
rotated into new random positions.

4.6 Fitness evaluation

Given a chromosome where the sequence of cartons has been determined and the
carton orientations have been fixed, Algorithm 1 is used to evaluate the fitness
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(a) Extreme points (b) Not preferred (c) Preferred

Fig. 1. Extreme points and the packing position selection

of the chromosome (to calculate the ultimate bin height). The algorithm is based
on the concept of extreme points which are used in the literature (Crainic et al.,
2008). After a carton has been placed into position, the left-front-bottom, right-
behind-bottom and left-behind-top points are treated as extreme points as shown
as bold dots in Figure 1(a). All available extreme points are collectively denoted
as set P . The next carton i to be packed will try all available extreme points in set
P and calculate an index for each point. For extreme point Pj , let LPj

, WPj
, HPj

denote the length, width and height of the convex hull after the carton i is placed
at the extreme point Pj , let V i

1 denote the total volume of all cartons packed so far
inclusive of carton i, the corresponding packing index IPj

is calculated as:

IPj
=

LPj
×WPj

×H2
Pj

V i
1

, (5)

which actually is a measure of height over the fill rate of current convex hull. The
extreme point with the highest index is selected for the packing point. If the car-
ton i cannot be placed at an extreme point, the corresponding index is set to 0.
Figures 1(b) and 1(c) show an illustration of the preferred extreme point selection
since Figure 1(c) results in a more ‘compact’ packing.

Algorithm 1 presents the procedure for the GA fitness evaluation. It starts from the
only extreme point of (0, 0, 0). At the beginning of each iteration, the current height
Hi−1 of the convex hull of packed cartons is recorded. This is just a precaution for
the situation when no existing extreme point can be used, the point (0, 0, Hi−1) will
be used instead to ensure a feasible packing. The packing index is then calculated
for each extreme point according to (5) and the point with the highest index is
selected. The carton i is then moved along X-axis, Y -axis and Z-axis respectively
to check whether the existing space between the cartons can be squeezed. The new
location is then denoted as the point to put carton i and the corresponding extreme
points are added into the extreme point set P . The whole process repeats until all
cartons are packed.
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Algorithm 1 Fitness evaluation
1: P = {(0, 0, 0)};
2: for i = 1 to n do
3: Get the height Hi−1 of convex hull of currently packed cartons;
4: for Pj ∈ P do
5: Calculate the index IPj

;
6: end for
7: if no extreme point can be selected then
8: P = P ∪ {(0, 0, Hi−1)};
9: Calculate the index IP(0,0,Hi−1)

;
10: end if
11: Select the extreme point Pj with highest index;
12: Put carton i at Pj and delete Pj from set P ;
13: Squeeze the carton along X-axis, Y -axis and Z-axis as much as possible,

denote the new location as {(xi, yi, zi)};
14: Put carton i at {(xi, yi, zi)};
15: Add the left-front-bottom, right-behind-bottom and left-behind-top points of

carton i as extreme points into set P ;
16: end for

4.7 Experiments

The 37 cases used for the MIP model were tested using the GA and the test re-
sults are reported in Tables 3 and 4. The population size for small bin test cases
is 120 and the code runs for 200 generations. For big bin test cases, the popula-
tion size and number of generations are 200 and 500 respectively. For crossover
and mutation rates, we evaluated combinations of crossover rate with 0.5, 0.7 and
0.9 and mutation rate with 0.1, 0.2, 0.3, 0.6 and 0.9. The results indicate that
a higher crossover rate and a higher mutation rate perform better and therefore
both rates are fixed at 0.9. Twenty runs were conducted for each test case and
the worst, best, average performance, the standard deviation of the run results,
the improvement of the average performance against the actual operation and the
average running times are shown. The actual and MIP results in Tables 1 and 2
are also listed here for easy reference. We also validate the GA’s performance
via the open source code provided by Martello et al., which is downloadable at
http://www.diku.dk/˜pisinger/new3dbpp/3dbpp.c. The Martello et al. code can solve
the general 3D-BPP with fixed carton orientations. We validate the GA solutions
by selecting one of the best solutions found by the GA and feeding the orientation
information to the code and trying to pack all the cartons into a bin with the cor-
responding height. The code is allowed to run for 2 hours. If the cartons can be
packed by the code, then a ‘Yes’ is marked under the column ‘Packed’, otherwise
a ‘No’ is filled. The time used (in seconds) by the code until it exits is also listed in
the tables.
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Table 3
GA performance for small bin test cases

GA Martello et al.∗

Case Act. MIP Worst Best Avg Std Iprv(%) T (s) Packed T (s)

SM01 91 80 82 80 81.2 1.01 10.77 0.56 Yes 0.1

SM02 56 37 38 37 37.3 0.44 33.39 0.74 Yes 0.1

SM03 69 47 47 47 47.0 0.00 31.88 0.79 Yes 0.1

SM04 91 82 91 83 85.2 2.74 6.37 1.59 Yes 0.6

SM05 56 52 58 52 55.5 1.93 0.89 0.82 Yes 1.8

SM06 53 38 47 40 44.5 3.20 16.04 1.48 Yes 0.1

SM07 70 62 62 62 62.0 0.00 11.43 2.82 Yes 3.0

SM08 91 71 71 69 69.8 0.89 23.30 2.47 Yes 0.1

SM09 71 62 62 52 58.3 3.88 17.89 3.96 No 7200.0

SM10 85 62 70 63 66.1 1.96 22.24 3.89 No 7200.0

∗General 3D-BPP code: http://www.diku.dk/˜pisinger/new3dbpp/3dbpp.c

For small bin test cases, the GA worst performance outperforms the actual packing
results except for SM05; however, the GA worst performance is inferior to MIP re-
sults except for SM03, SM07, SM08 and SM09. The GA best performance achieves
equivalent or better solutions compare to the MIP results except for SM04, SM06
and SM10. The GA average performance is close to or better than the MIP perfor-
mance for SM07 to SM09, but is outperformed by MIP for SM01, SM02, SM04,
SM05, SM06 and SM10. This indicates that the MIP model works well for small
test cases. The code of Martello et al. can pack the small bins (SM01 to SM08) with
very short time if given the cartons orientation, but fails to validate the solutions for
SM09 and SM10 within 2 hours’ time.

For big bin test cases shown in Table 4, it is observed that GA worst performance
outperforms the actual results in all cases; performance for some cases is signif-
icantly improved. Compare with the MIP results, GA worst is only outperformed
by MIP in 5 cases. The GA best performance provide equivalent or better solutions
than the MIP does in all cases except BM02 and BM04. The GA average also pro-
vides satisfactory performance compared with the MIP results. It should be pointed
out that as the number of cartons to be packed increases, the GA tends to outper-
form the MIP. The validation through the code of Martello et al. indicate that for
most cases, the code is not able to find a solution to pack the cartons even the car-
tons orientations are given. This indicates the difficulty of the test cases used in this
paper; on the other hand, this is may due to the big size difference of cartons used
for the test cases which might not exploit the features of the Martello et al. code.
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Table 4
GA performance for big bin test cases

GA Martello et al.∗

Case Act. MIP Worst Best Avg Std Iprv(%) T (s) Packed T (s)

BM01 91 84.1 84.1 84.1 84.1 0.00 7.58 1.2 Yes 0.1

BM02 91 83.1 86.4 84.1 84.2 0.51 7.47 4.8 No 7200.0

BM03 45 32 32 32 32.0 0.00 28.89 7.1 Yes 0.1

BM04 91 77.4 84.1 83.4 83.5 0.26 8.24 5.4 Yes 5.0

BM05 91 79 83.1 79 81.8 1.59 10.11 6.5 No 7200.0

BM06 67 40 47 40 44.3 2.49 33.88 12.7 Yes 0.1

BM07 48 40 40 40 40.0 0.00 16.67 23.6 Yes 6.0

BM08 59 53 53 51 52.6 0.82 10.85 24.7 No 7200.0

BM09 94 82 74 72 73.7 0.73 21.60 20.4 No 7200.0

BM10 91 63.1 61 61 61.0 0.00 32.97 23.8 Yes 0.6

BM11 91 78 77.4 77.4 77.4 0.00 14.95 24.4 No 7200.0

BM12 94 68 61 61 61.0 0.00 35.11 32.4 Yes 158.8

BM13 83 78 77 71 74.9 2.47 9.76 28.4 No 7200.0

BM14 95 88.4 85 78.4 81.7 2.04 14.11 27.2 Yes 205.1

BM15 91 87 78 75 77.6 0.76 14.73 33.0 No 7200.0

BM16 63 52 52 48 50.5 1.96 19.84 49.6 No 7200.0

BM17 91 88.4 85 80 82.9 1.60 8.90 30.5 No 7200.0

BM18 70 73.4 68 63.1 65.8 1.89 6.00 40.8 No 7200.0

BM19 94 79 68 63.1 66.2 1.62 29.57 40.0 No 7200.0

BM20 94 87 84 79 80.8 1.24 14.04 32.9 No 7200.0

BM21 95 87 84.1 78.4 80.6 1.95 15.16 33.1 No 7200.0

BM22 91 87 78 78 78.0 0.00 14.29 34.2 No 7200.0

BM23 95 93.4 82 78.4 79.4 1.01 16.42 38.5 No 7200.0

BM24 91 89 90 80 86.0 3.07 5.49 44.8 No 7200.0

BM25 94 79 78 76 77.6 0.60 17.45 53.6 No 7200.0

BM26 91 97 87 82 85.9 1.09 5.60 50.8 No 7200.0

BM27 91 109 90 85 87.2 1.36 4.18 59.3 No 7200.0

∗General 3D-BPP code: http://www.diku.dk/˜pisinger/new3dbpp/3dbpp.c
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(a) Top view (b) Bottom view

Fig. 2. Packing results achieved for a big bin.

Figure 2 presents the packing results for a big bin with views from the top and the
bottom of the bin, where it can be observed that the cartons are compactly packed.

5 Batch bin packing

The batch bin packing problem is the extension of the single bin packing problem
we have discussed so far. The problem is to ship a batch of cartons with the variable
height bins available so that the ultimate shipping cost/volume can be minimized.

For single bin packing problem, the cartons and the bin are fixed. Therefore, there
is no need to consider the space charged for the pallet leg and cushion layer; the bin
height is the sole goal to pursue. However, in a batch bin packing problem, the types
of bins to be used must consider the pallet legs and cushion layers as different type
of bin has different volume for pallet leg and cushion layer. Therefore, the objective
function needs to be changed to:

min
∑

i

L1W1(H̃i + HL1 + HC1) +
∑
j

L2W2(H̃j + HL2 + HC2) (6)

The objective function calculates the overall volume to be charged by the logistics
service providers, where L1, W1 and L2, W2 are the length and width of small and
big bins, respectively; HL1 , HC1 , HL2 and HC2 are the height for the pallet leg and
cushion layer for small and big bins. For the batch bin packing problem, we use the
heuristic shown in Algorithm 2.

Algorithm 2 presents a heuristic approach based on the solution proposed in Sec-
tion 4 for single bin packing. It utilizes a two-stage approach: the first stage tries to
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Algorithm 2 Batch bin packing algorithm
1: Read in all the carton information and create a list Lm to store all the cartons;
2: while the overall carton volume of Lm exceeds the threshold α do
3: Randomly pick cartons from Lm and put into list Lt until the overall carton

volume of Lt exceeds α;
4: Use the single bin packing algorithm to pack Lt and get the height of the

bin;
5: if the height does not exceed the height limit then
6: Randomly select cartons from Lm and put into list La so that the total

carton volume of La is about the gap capacity remaining for the bin;
7: Combine La with Lt;
8: while the combined list cannot be put in the bin do
9: Randomly remove one carton out of Lt and put it back into Lm;

10: Try to pack the cartons into the bin;
11: end while
12: else
13: repeat
14: Randomly remove one carton out of Lt and put it back into Lm;
15: Try to pack Lt into the bin;
16: until Lt can be packed in the bin
17: end if
18: Set Lt = ∅, La = ∅;
19: end while
20: Evaluate the remaining cartons with three cases: one big bin, one small bin and

two small bins;
21: Select the feasible case where the overall bin volume is minimized for the

remaining cartons;
22: Output the results.

pack cartons into big bins if the overall remaining carton volume exceeds a thresh-
old α, which is a conservative fill rate estimation, e.g., 75% of the capacity of a big
bin. The second stage evaluates the three scenarios where a big bin, a small bin and
two small bins are used and the scenario with the minimal overall volume calcu-
lated according to (6) for the stage two cartons is selected. The underlying principle
is to use as many big bins as possible while minimizing the overall volume used for
the stage two cartons.

We use the 37 test cases to create 3 batches to test the performance of the proposed
batch bin packing algorithm. The first batch randomly picks 5 big bin test cases and
5 small bin test cases; the second batch includes 10 randomly selected big bin test
cases and the third batch uses the remaining 17 test cases.

Table 5 reports the net fill rate and gross fill rate for the actual results, the results
from individual GA runs and the batch bin packing runs. The net fill rate for ‘Ac-
tual’ is calculated using the actual height of each bin; the individual GA uses the
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Table 5
Performance for batch bin packing.

Net fill rate Gross fill rate

Batch Cartons Actual Ind. GA Batch GA Actual Ind. GA Batch GA

1 217 72.91% 82.70% 85.39% 57.07% 63.42% 68.05%

2 262 68.06% 85.07% 85.47% 54.27% 65.32% 68.07%

3 338 71.01% 82.83% 84.38% 56.58% 64.40% 67.35%

average performance shown in Tables 3 and 4 as the bin height and the batch GA is
the average of 20 runs for each batch; only the usable bin volume is used to calcu-
late the net fill rate. For gross fill rate, the volume for the pallet leg, cushion layer
and shrink wrapping is taken into consideration.

It can be observed from Table 5 that the net fill rates increase for all 3 batches when
applying the individual GA; the fill rates are further improved when using the batch
bin packing algorithm. The maximum fill rate improvement is 17.41% for batch 2
and minimum improvement is 12.48% for batch 1. For the gross fill rate, the similar
pattern can be obtained with a minimum improvement of 10.98% and a maximum
improvement of 13.8%. The difference between the individual GA runs and batch
GA runs indicates pooling cartons together and packing in batches will be helpful
for the actual operations.

6 Conclusion

This paper discussed the 3D-BPP with variable bin heights. The cartons to be
packed can be freely rotated into different orientations. A mathematical model was
modified based on the literature and numerical experiments were conducted. The
results indicated that the mathematical approach is still not suitable for real time bin
packing problems. A special bin packing algorithm based on packing index was de-
signed to utilize the special problem feature and was used as a building block for
a genetic algorithm designed for the variable height 3D-BPP. Subsequently, the
GA was applied to the situation where more than one type of bin can be used and
a heuristic for packing a batch of cartons was designed. The performance of the
GA was compared with the actual operation and the mathematical model; an open
source general bin packing algorithm was also used to validate the results. Numer-
ical experiments indicated that the proposed GA can improve the packing results
significantly compared to the actual operations and provides quick and satisfactory
results.
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