
Chapter 3

Valid inequalities

Consider the general integer linear programming problem from Chapter 1 and Chapter 2.

zIP = max cT x (IP)
s. t. Ax ≤ b

x ∈ Zn
+

Denote the set of feasible solutions of (IP) as

X = {x ∈ Zn
+ | Ax ≤ b}.

We saw in Chapter 2 that the convex hull of X is a polyhedron, meaning that it can be written (in
theory) as

conv(X) = {x ≥ 0 | Ãx ≤ b̃}.

If we knew Ã and b̃, then we could solve (IP) as a linear program and efficiently obtain an optimal
solution. However, we do not know the exact description Ã and b̃ of conv(X) in general.

In Chapter 2 we saw that X can be described using different formulations, and that some
formulations are better than others. A related idea is that, once we are given a formulation P
of X, we can get “closer” to conv(X) using valid inequalities. Before formally defining valid
inequalities, Figure 3.1 gives a geometrical illustration of the idea. If we add a new constraint (in
green) to our original formulation (in blue), such that we cut off part of P without cutting off any
integer point of X, we can potentially get a better approximation of conv(X). Most commercial
and non-commercial solvers use branch-and-cut, an algorithm based on branch-and-bound where
at each node, instead of directly solving the formulation given by the LP relaxation of a model,
many inequalities (such as the green one in Figure 3.1) are added. In this way, one can obtain a
better formulation, potentially leading to better bounds, before branching.
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Chapter 3. Valid inequalities
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Figure 3.1: Geometrical illustration of a valid inequality for conv(X).

Definition 16. An inequality πT x ≤ π0 is called valid inequality for a set X ⊆ Rn if πT x̄ ≤ π0 for
all x̄ ∈ X.

Note that in the definition above, X can be any set, either discrete or continuous. The follow-
ing observation will be useful for our purposes.

Observation 5. If an inequality is valid for an integer set of points X ∈ Zn, then it is also valid
for conv(X).

Obviously, if P = {x ∈ Rn | Ax ≤ b}, then inequalities Ax ≤ b are valid for P. The question
we would like to answer in this chapter is how to find further valid inequalities. We first start
with some precise examples and then we define how valid inequalities can be derived in general.
Then, we give algorithms to automate the process of generating valid inequalities, and finally we
introduce some ideas on how to find “good” valid inequalities. (This chapter uses many examples
and follows a similar structure to Chapters 8 and 9 of [3].)

3.1 First examples
Example 14 (Stable Set). Consider the stable set problem (2.24)-(2.26) for a graph G = (V, E)
with n = |V |. As a reminder, the stable set polytope is the convex hull of feasible solutions of
(2.24)-(2.26).

S T AB(G) = conv{x ∈ {0, 1}n | xi + x j ≤ 1, for all (i, j) ∈ E}.
The LP-relaxation of model (2.24)-(2.26), called the edge relaxation, with set of feasible solutions

ES T AB(G) = {x ∈ [0, 1]n | xi + x j ≤ 1, for all (i, j) ∈ E}.
In Section 2.3 we provided a different formulation for the stable set problem, the clique

relaxation, which was defined as

QS T AB(G) = {x ∈ [0, 1]|V | |
�

i∈Q
xi ≤ 1, ∀Q clique of G}. (3.1)
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3.1. First examples

Actually, the clique inequalities
�

i∈Q
xi ≤ 1, ∀Q clique of G (3.2)

are valid inequalities for S T AB(G). We can check Definition 16 for the integer points in S T AB(G).
Assume for a contradiction that

�
i∈Q xi ≤ 1 is not satisfied for a certain clique Q. Then, there

exist at least to vertices i, j ∈ Q with xi = x j = 1, but this would contradict inequality xi + x j ≤ 1,
because since Q is a clique, there exists an edge (i, j) ∈ E. By Observation 5, we know that the
clique inequalities are valid for S T AB(G).

Another class of valid inequalities for S T AB(G) are the odd cycle inequalities. Consider a
cycle C ⊆ V of odd length, |C| = 2k + 1, where k ≥ 1 is an integer. The odd cycle inequality for
C is defined as �

i∈C
xi ≤ |C| − 1

2
. (3.3)

The odd cycle inequalities are valid for the integer points in S T AB(G) because for every odd
cycle C we can at most select |C|−1

2 vertices to be in the stable set.

Example 15 (Implications). Consider the set of binary points

X = {x ∈ {0, 1}5 | 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

Clearly, if x2 = x4 = 0, then the inequality defining X cannot be satisfied. This means that the
inequality x2 + x4 ≥ 1 is valid for X. We call this type of inequality implication inequality.

Example 16 (Knapsack). Consider the Knapsack set

X = {x ∈ {0, 1}5 | 3x1 + 4x2 + 2x3 + 3x4 + x5 ≤ 5}

Clearly, x1 and x2 cannot be set to 1 at the same time, otherwise the inequality defining X would
not be satisfied. This means that the inequality x1 + x2 ≤ 1 is valid for X.

In general, consider now a Knapsack constraint for n items, each of size ai, i = 1, . . . , n and
capacity b

n�

i=1

aixi ≤ b (3.4)
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Chapter 3. Valid inequalities

The Knapsack polytope is the convex hull of all binary points satisfing (3.4)

conv{x ∈ {0, 1}n |
n�

i=1

aixi ≤ b}.

A set C ⊆ {1, . . . , n} is called a cover if and only if
�

i∈C ai > b. If, in addition,
�

i∈C\{ j} ai ≤ b,
for all j ∈ C, then C is called a minimal cover. For any cover C the cover inequality

�

i∈C
xi ≤ |C| − 1

is a valid inequality for the Knapsack polytope.

Example 17 (Matching). Consider the maximum cardinality matching problem for a graph
G = (V, E), introduced in Example 2.

max
�

(i, j)∈E
xi j (1.2)

s. t.
�

(i, j)∈δ(i)
xi j ≤ 1 ∀i ∈ V

xi j ∈ {0, 1} ∀(i, j) ∈ E

Consider a subset of vertices T ⊆ V of odd cardinality, |T | = 2k + 1, where k ≥ 1 is an integer.
Let E(T ) = {(i, j) ∈ E | i, j ∈ T } be the set of edges with both endpoints in T . Then, the odd set
inequality �

(i, j)∈E(T )

xi j ≤ |T | − 1
2

(3.5)

is valid for the convex hull of feasible solutions of (1.2). Indeed, since |T | is of odd cardinality, it
cannot be the case that all edges selected to be in the matching have both endpoints in T .

Example 18 (Integer Rounding). In this example we present a simple “trick” that will be gen-
eralized later. Consider the integer set X = P ∩ Z4 where

P = {x ∈ R4
+ | 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}.

Multiplying the inequality defining P by u1 =
1

11 we obtain an inequality that is clearly valid
for P.

13
11

x1 +
20
11

x2 + x3 +
6

11
x4 ≥ 72

11
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3.1. First examples

Moreover, since x1, . . . , x4 ≥ 0, we can round up the coefficients of the variables, and obtain

2x1 + 2x2 + x3 + x4 =

�
13
11

�
x1 +

�
20
11

�
x2 + �1�x3 +

�
6

11

�
x4 ≥ 72

11

Finally, for x = (x1, x2, x3, x4) ∈ X, since both the variables and the coefficients are integer
numbers, and 72

11 = 6.5454..., inequality

2x1 + 2x2 + x3 + x4 ≥
�
72
11

�
= 7

holds, meaning that it is valid for X.

Example 19 (Mixed-integer Rounding). Consider a mixed-integer set

X≥ = {(x, y) ∈ R1
≥0 × Z1 | x + y ≥ b, x ≥ 0}

where b � Z. Below we illustrate X≥0 X≥ when b = 1.5.

y

x

•(0, b)

Geometrically, it is easy to see that the green inequality below is a valid inequality which
provides a better formulation than only x+y ≥ b. In addition, this inequality is easy to calculate,
one only has to compute the equation of the line going through points (0, �b�) and (b − �b�, �b�).
(Point (0, �b�) is the intersection between x = 0 and y = �b�, point (b−�b�, �b�) is the intersection
between x + y = b and y = �b�.)

y

x

(0, �b�)•

•
(b − �b�, �b�)
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Chapter 3. Valid inequalities

In this way, one obtains that inequality

x + f y ≥ f �b�
with f = b − �b�, is valid for X≥.

Moreover, the inequality above can be extended to a mixed integer set with more than two
variables. Consider for example X≥0 X≥ = P ∩ (Z4 × R1) where

P = {(y, s) ∈ R4
≥0 × R1

≥0 | 13y1 + 20y2 + 11y3 + 6y4 + s ≥ 72}
Divide the constraint defining P by 11

13
11
y1 +

20
11
y2 + y3 +

6
11
y4 +

1
11

s ≥ 72
11
.

and round up the coefficients of the y variables. We obtain an inequality which is valid for P

2y1 + 2y2 + y3 + y4 +
1

11
s ≥ 72

11
.

Set y = 2y1 + 2y2 + y3 + y4 and x = 1
11 s. We are in the setting above, with x + y ≥ 72

11 . In this
case, f = 72

11 −
�

72
11

�
= 72

11 − 6 = 72
11 − 66

11 =
6

11 .
We know that inequality

x +
6

11
y ≥ 6

11
· 7

is valid for X≥0 X≥, hence
11
6

x + y ≥ 7

is also valid, which in terms of the original variables, produces

2y1 + 2y2 + y3 + y4 +
1
6

s ≥ 7.

3.2 Valid inequalities in general
In many cases, valid inequalities are constructed by using knowledge about a specific problem,
such odd cycles inequalitie for the stable set problem or odd set inequalities for the matching
problem. However, there also exist general procedures to generate valid inequalities, which can
be very useful when problem-specific knowledge is not available.

3.2.1 Valid inequalities for Linear Programs
Although we use valid inequalities to better solve integer programs, we are actually interested
in generating valid inequalities for polyhedra (for formulations). More precisely, given a set of
integer points X, and a (not ideal) formulation P for it, we want inequalities that are valid for
conv(X) while cutting off some points in P.
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3.2. Valid inequalities in general

Figure 3.2: Valid inequalities for conv(X) cutting off part of the blue formulation.

It is therefore useful to better understand the geometrical meaning of valid inequalities in the
context of linear programs.

Theorem 8. Let A ∈ Rm×n, b ∈ Rm. πT x ≤ π0 is valid for P = {x ∈ Rn | Ax ≤ b, x ≥ 0} � ∅ if, and
only if, there exist u ∈ Rm

≥0 such that uT A ≥ πT and ub ≤ π0.

Proof. By linear programming duality, max{πT x | x ∈ P} ≤ π0 if, and only if, min{uT b | uT A ≥
πT , u ≥ 0} ≤ π0. �

Let us look at the interpretation in the primal. Equation max{πT x | x ∈ P} ≤ π0 is telling us
is that an inequality πT x ≤ π0 is valid for P if, when optimizing over P in the direction of πT x
we obtain a maximum which is at most π0. Indeed, if the maximum was larger than π0, then the
inequality would not be valid for some points in P.

πT x = π0

•
πT x = µ0

•

Figure 3.3: On the left, the optimal value over P in direction πT x is ≤ π0, so πT x ≤ π0 is valid for
P. On the right, the optimal value over P in direction πT x is > µ0, so πT x ≤ µ0 is not valid for P.

3.2.2 Valid inequalities for general Integer Programs
In this section we describe a general procedure to construct valid inequalities for integer pro-
grams. Let us start with a similar trick as in Example 18.
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Chapter 3. Valid inequalities

Example 20. Let X = P ∩ Zn where

P = {(x1, x2) ∈ R2 | 7x1 − 2x2 ≤ 14
x2 ≤ 3
2x1 − 2x2 ≤ 3
x1, x2 ≥ 0}

We proceed in three steps.

Step 1. Combine the constraints (except the nonnegativity constraints) with nonnegative weights
u = (2

7 ,
37
63 , 0). We obtain inequality

2x1 +
1

63
x2 ≤ 121

21
,

which is valid for P (this inequality is implied by inequalities defining P).

Step 2. Since x1, x2 ≥ 0, we have that 2x1 + 0x2 = �2�x1 +
�

1
63

�
x2 ≤ 2x1 +

1
63 x2. Hence,

2x1 + 0x2 ≤ 121
21
= 5.7619...

is valid for P.

Step 3. Finally, since points in X are integer,

2x1 ≤
�
121
21

�
= 5

is valid for points in X.

Note that the first two steps construct valid inequalities for the polyhedron P, while the last
step derives a valid inequality for the set of integer points X. It is this last step which provides
an inequality that potentially improves the formulation P for X.

This process can be iterated using inequality 2x1 ≤ 5. Indeed, using a weight of 1
2 for it we

obtain inequality x1 ≤
�

5
2

�
= 2. The figure below illustrates polytope P in blue, and the valid

inequalities in green. Note that the inequality obtained in the second iteration is tigther than the
first one.
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5
2

x1 = 2

The procedure above can be generalized to any formulation P for an integer set X using
the Chvátal-Gomory procedure. Inequalities obtained with this procedure are called Chvátal-
Gomory (CG) inequalities.

Chvátal-Gomory procedure to construct valid inequalities

Consider an integer set X = P ∩ Zn, where P = {x ∈ Rn
≥0 | Ax ≤ b}, and A is an m × n

matrix with columns A1, . . . , An. Let u ∈ Rm
≥0. Then,

(i) The inequality
n�

j=1

(uT Aj)x j ≤ uT b

is valid for P, because u ≥ 0 and
�n

j=1 Ajx j ≤ b.

(ii) The inequality
n�

j=1

�uT Aj�x j ≤ uT b

is valid for P, because x ≥ 0.

(iii) The inequality
n�

j=1

�uT Aj�x j ≤ �uT b�

is valid for X, because x is integer so
�n

j=1�uT Aj�x j is integer.

Note that the big difficulty of the CG procedure lies in the selection of the multipliers u ∈ Rm
≥0,

47



Chapter 3. Valid inequalities

and therefore also on selecting the constraints that one includes in the linear combination. Some
known tips to select u are have been summarized for example in [9]. First, it is a known result
that if we select all multipliers to be rational and 0 ≤ ui < 1, we do not lose generality. Second,
any CG inequality can be generated using a vector u with at most min{m, n} strictly positive
coefficients. These tips imply that the coefficients of the CG inequality will be reasonably small
(if the original coefficients are reasonably small).

Note also that when P is defined by Ax ≥ b, then the procedure slightly changes. (Which
changes do you have to make in this case?)

Example 21 (Example 17 continued). Consider formulation P corresponding to model (1.2) of
the matching problem

P = {x ∈ [0, 1]|E| |
�

(i, j)∈δ(i)
xi j ≤ 1, ∀i ∈ V},

We will see that the odd set inequalities can be obtained by applying the Chvátal-Gomory
procedure. Consider a subset of vertices T ⊆ V of odd cardinality |T | ≥ 3.

�

(i, j)∈E(T )

xi j ≤ |T | − 1
2

(3.5)

Step 1. Define u ∈ R|V |+ as follows

ui =


1
2 if i ∈ T
0 otherwise

Take a nonnegative linear combination of the constraints defining P using multipliers u, pro-
viding the valid inequality for P

�

(i, j)∈E(T )

xi j +
1
2

�

(i, j)∈δ(T )

xi j ≤ |T |2

where E(T ) = {(i, j) ∈ E | i, j ∈ T } is the set of edges with both endpoints in T and δ(T ) =
{(i, j) ∈ E | i ∈ T, j � T } is the set of edges with exactly one endpoint in T .
Step 2. Round down the coefficients of the left-hand-side, resulting in

�

(i, j)∈E(T )

xi j ≤ |T |2

which is a valid inequality for P.
Step 3. Since all variables xi j are integer (when viewed as variables in X = P∩Z|E|),�(i, j)∈E(T ) xi j

must also be integer, hence �

(i, j)∈E(T )

xi j ≤
� |T |

2

�
=
|T | − 1

2

is a valid inequality for X = P ∩ Z|E|.
Note that

� |T |
2

�
= |T |−1

2 because |T | is of odd cardinality. For sets T of even cardinality, the
procedure has no effect, because it would provide a trivial inequality.
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3.2. Valid inequalities in general

The interesting (and rather surprising fact) is that every valid inequality can be obtained by
iteratively applying the Chvátal-Gomory procedure a finite number of times. This is even more
interesting when considering that there are infinitely many valid inequalities as illustrated in
Figure 3.4
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Figure 3.4: There are infinitely many possible valid inequalities (only a few here...).

Theorem 9. Every valid inequality for X = P ∩ Zn, where P = {x ∈ Rn
≥0 | Ax ≤ b}, can be

obtained by applying the Chvátal-Gomory procedure a finite number of times.

The theorem above motivates the following definition.

Definition 17. The Chvátal rank of a valid inequality πT x ≤ π0 for X = P ∩ Zn, where P = {x ∈
Rn
≥0 | Ax ≤ b}, is the minimum number of iterations of the Chvátal-Gomory procedure required

to obtain πT x ≤ π0.

Since a Chvátal-Gomory inequality �uT A�x ≤ �uT b� with u ∈ Rm
≥0 is valid for X = {x ∈

Zn
+ | Ax ≤ b}, by Observation 5, it is also valid for PI = conv(X). This means that PI ⊆ P ∩ {x ∈
Rn
≥0 | �uT A�x ≤ �uT b�}

Definition 18. Let P = {x ∈ Rn
≥0 | Ax ≤ b}. The set

P� = P ∩
�

u≥0

{x ∈ Rn
≥0 | �uT A�x ≤ �uT b�}

is called the Chvátal closure of P.

Theorem 10. The Chvátal closure P� of a polyhedron P is again a polyhedron.

The theorem above is not obvious because P� is defined by infinitely many inequalities. More
precisely, while the set of inequalities in the intersection is infinite, a finite number of these
inequalities is sufficient to describe P� (Schrijver 1980). Since P� is a polyhedron, this means
that we can again compute the Chvátal closure of P�, and obtain a new polyhedron, and so on.
This leads to a sequence of polyhedra

P(0) := P

P(i) :=
�
P(i−1)

��
for i ≥ 1
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Chapter 3. Valid inequalities

such that
P = P(0) ⊇ P(1) ⊇ P(2) ⊇ P(3) ⊇ · · · ⊇ P(k) = PI

Definition 19. The Chvátal rank of a polyhedron P is the smallest k such that P(k) = PI.

It is a known fact that the Chvátal rank of a polyhedron is always finite.

Example 22 (Example 21 continued). Consider the macthing polytope

P = {x ∈ [0, 1]|E| |
�

(i, j)∈δ(i)
xi j ≤ 1, ∀i ∈ V},

Example 21 shows that the odd set inequalities

�

e∈E(T )

xe ≤ |T | − 1
2

∀T ⊆ V of odd cardinality |T | ≥ 3 (3.5)

have Chvátal rank 1. Moreover, it can be shown that

PI = P� = {x ∈ [0, 1]|E| |
�

(i, j)∈δ(i)
xi j ≤ 1, ∀i ∈ V

�

e∈E(T )

xe ≤ |T | − 1
2

∀T ⊆ V of odd cardinality |T | ≥ 3}

hence polytope P has Chvátal rank 1.

3.3 Automatic generation of valid inequalities
In the previous sections we have seen how to generate families of inequalities, either by using
properties of the problem or by generating them with the Chvátal-Gomory procedure. However,
many of the previously presented families of valid inequalities have exponential size. Consider
for example the family of clique inequalities for the stable set polytope

�

i∈Q
xi ≤ 1, for all Q ⊆ V

We have exponentially many of them, because we have one inequality for each clique Q ⊆ V , and
there are potentially exponentially many cliques in a given graph G. In this section we explain
how to actually use valid inequalities in practice, even for families of exponetial size.

Moreover, depending on the objective function, we might not actually care about some of the
inequalities, for example in Figure 3.5, the orange inequalities are less interesting than the green
inequalities considering our objecive function. Indeed, for the integral optimum of this problem,
all orange inequalities are automatically satisfied.
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3.3. Automatic generation of valid inequalities
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Figure 3.5: Which valid inequalities are actually interesting?

This idea of generating only “useful” inequalities inspired the idea of automatic reformula-
tion or cutting plane algorithms. We present it here as in [3].

3.3.1 A general cutting plane algorithm
First, we need the following definition.

Definition 20. The separation problem associated with a polytope P ⊆ Rn and a point x̄ ∈ Rn is
to decide whether x̄ ∈ P or to provide an inequality πx ≤ π0 satisfied by all points x ∈ P but such
that πx̄ > π0.

•
x̄

•
x̄

Figure 3.6: If x̄ is not in the polytope P defined by the blue inequalities, then the green inequality
separates x̄ from P.

In our context, we use separation problems as follows. Look for example at Figure 3.5. Let x̄
be an optimal solution obtained when optimizing the red function cT x over the blue formulation.
Assume that we know a family of valid inequalities F (like the green ones). We would like
to know whether one of the inequalities in F is such that πx ≤ π0 is satisfied for all points
x ∈ conv(X), but such that πx̄ > π0. If such an inequality exists, then we can add it to our original
(blue) formulation, and obtain a smaller formulation. As mentioned above, this is particularly
interesting when the family of inequalities F contains exponentially many inequalities.

The following algorithm, called the cutting plane algorithm, formalizes this idea of generat-
ing only “interesting” inequalities. The input of the algorithm is a formulation P of a set X ⊆ Zn,
and a family of valid inequalities F .
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Chapter 3. Valid inequalities

Cutting plane algorithm

• Initialization. Set t = 0 and P0 = P.

• Iteration t. Solve the LP
z̄t = max{cx | x ∈ Pt}

and let xt be the corresponding optimal solution.

– If xt ∈ Zn, then stop. xt is an optimal integral solution.

– If xt � Zn, then solve the separation problem for xt, conv(X) and family F .

– If the separation problem returns an inequality from F such that πt xt > πt
0, then it

cuts off xt. In this case, set Pt+1 = Pt ∩ {x | πt x ≤ πt
0} and increment t. Otherwise,

stop.

If the algorithm terminates without finding an integral solution for IP, then

Pt = P ∩ {x | πix ≤ πi
0, i = 1, . . . , t}

is a better (or equal) formulation than P and can, for example, be given as an initial improved
formulation for a branch-and-bound algorithm. The branch-and-cut algorithm is a branch-and-
bound algorithm where a cutting plane procedure is integrated at each node.

Figure 3.7 illustrates the cutting plane algorithm.
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Figure 3.7: Cutting plane algorithm (points x2 and x3 have been updated for the illustration to be
completely accurate (previously they were not optimal w.r.t c).

As a final remark, note that the cutting plane algorithm heavily relies on knowing how to
solve the separation problem for a family of valid inequalities F . This is in general not a trivial
task, and the separation problem can even be NP-hard. We will discuss separation problems later
in this chapter, for now we only give an example.
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3.3. Automatic generation of valid inequalities

Example 23 (Example 22). Let G = (V, E) be a graph. The maximum weight matching is a
generalization of the maximum cardinality matching problem, where we associate nonnegative
weights wi j to every edge (i, j) ∈ E and we want to maximize the total weight of the matching.

max
�

(i, j)∈E
wi jxi j (3.6)

s. t.
�

(i, j)∈δ(i)
xi j ≤ 1 i ∈ V (3.7)

xi j ∈ {0, 1} (i, j) ∈ E (3.8)

(The maximum cardinality matching problem is a particular case where wi j = 1 for all (i, j) ∈ E.)
We will illustrate the cutting plane algorithm on the following graph using the family of odd

set inequalities

�

(i, j)∈E(T )

xi j ≤ |T | − 1
2

∀T ⊆ V of odd cardinality |T | ≥ 3. (3.5)
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Let P0 be the formulation corresponding to model (3.6)-(3.8)

P0 = {x ∈ [0, 1]|E| |
�

(i, j)∈δ(i)
xi j ≤ 1, ∀i ∈ V},

Iteration 0

• Solve the LP
z̄0 = max{

�

(i, j)∈E
wi jxi j | x ∈ P0}

which returns an optimal solution

x0 =

�
1
2
,

1
2
,

1
2
,

1
2
,

1
2
, 0, 0, 0, 0, 0,

1
2
,

1
2
,

1
2
,

1
2
,

1
2

�
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with value z0 = 15. (The first five coordinates correspond to the “outer cycle” of the exam-
ple x12, x23, x34, x45, x15, the last five coordinates to the “inner cycle” x68, x8,10, x10,7, x79, x96

and and the coordinates in the middle represent the remaining edges.)

• The separation problem over the family F of odd set inequalities returns for example

πT x = x12 + x23 + x34 + x45 + x15 ≤ 2 = π0

which cuts off x0 (indeed, x0
12 + x0

23 + x0
34 + x0

45 + x0
15 = 2.5 > 2).

• Set P1 = P0 ∩ {x | x12 + x23 + x34 + x45 + x15 ≤ 2}.

Iteration 1

• Solve the LP
z̄1 = max{

�

(i, j)∈E
wi jxi j | x ∈ P1}

which has optimal solution

x1 =

�
1, 0, 1, 0, 0, 0, 0, 0, 0, 0,

1
2
,

1
2
,

1
2
,

1
2
,

1
2

�

with value z1 = 13.5.

• The separation problem over the family F of odd set inequalities returns

πT x = x68 + x8,10 + x10,7 + x79 + x96 ≤ 2 = π0

which cuts off x1.

• Set P2 = P1 ∩ {x | x68 + x8,10 + x10,7 + x79 + x96 ≤ 2}.

Iteration 2

• Solve the LP
z̄2 = max{

�

(i, j)∈E
wi jxi j | x ∈ P2}

which has optimal solution

x2 = (1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0)

with value z2 = 13 and is an optimal integral solution selecting M = {x12, x34, x5,10, x68, x97}
and the algorithm terminates.
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3.3.2 A particular implementation: Gomory’s fractional cutting plane al-
gorithm

In this section we give a particular implementation of the generic cutting plane algorithm de-
scribed above, which is based on the simplex algorithm.

Consider the integer program

max cT x (IP-Gomory)
s. t. Ax = b

x ≥ 0
x ∈ Zn

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Remember that any integer program can be brought
to the form (IP-Gomory) by adding slack or surplus variables to inequality constraints and by
splitting a variable into two variables representing its negative and positive parts if its domain is
not originally restricted to be x ≥ 0.

The idea is to first solve the LP-relaxation of (IP-Gomory) with the simplex algorithm. Let
x∗ be an optimal solution of the LP-relaxation associated with a basis B. Rewrite the vector of
variables as x = (xB, xN), where xB are the basic variables and xN the non-basic variables. If x∗

is fractional, this necessarily means that there exists at least one basic variable taking fractional
value. Then, we can generate a Chvátal-Gomory inequality using the constraint associated with
this fractional basic variable. Let A = (B,N) be the matrix of constraint coefficients, where B are
the columns associated with the basic variables and N the columns associated with the non-basic
variables. Let c = (cB, cN) be the vector of coefficients, where cB are the coefficients associated
with the basic variables and cN , the coefficients associated with the non-basic variables.

We can rewrite (IP-Gomory) using the notation of the Tableau form in the simplex algorithm
as

max cT
BB−1b +(cT

N − cT
BB−1N)xN (IP-Gomory)

s. t. xB +B−1NxN =B−1b
x ≥ 0
x ∈ Zn

Using the notation z̄ = cT
BB−1b, for the value of the current solution, c̄T

N = cT
N −cT

BB−1N for the
reduced costs, b̄ = B−1b for the value of the basic variables and ĀN = B−1N for the coefficients of
the non-basic variables in the constraints, and writing each constraint separately, we can rewrite
the problem as

max z̄ +
�

j∈N
c̄ jx j (IP-Gomory)

s. t. xBi +
�

j∈N
āi jx j = b̄i i = 1, . . . ,m

x ≥ 0
x ∈ Zn
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If the optimal solution of the LP is not integral, this means that one of the basic variables xBi

is fractional, which means that for one of the rows, b̄i must be fractional and non-negative.
Take the corresponding row and apply

xBi +
�

j∈N
�āi j�x j ≤ �b̄i� (3.9)

This is a Chvátal-Gomory inequality using multipliers ui = 1 and uk = 0 for rows k � i, therefore
it is valid for (IP-Gomory).

Moreover, it cuts off the optimal LP solution x∗. Indeed, since (3.9) is valid and xBi +�
j∈N āi jx j = b̄i is part of the constraints, if the solution x∗ is not cut off, it should satisfy both

constraints and therefore their sum. However, their sum is
�

j∈N
(āi j − �āi j�)x j ≥ (b̄i − �b̄i�)

which is not satisfied because by x∗ because all non-basic variables x∗j take value zero and b̄i −
�b̄i� > 0 by definition, because b̄i is fractional and non-negative.

Observation 6. Gomory’s fractional cutting plane algorithm is nowadays implemented in most
solvers (despite many backs and forths in the discussion of its usefulness, see for example [10]).
When trying to solve a problem using cutting planes, there is a trade-off to be taken into account.
On one hand, Gomory’s fractional cutting plane algorithm strengthens the formulations very
much, but on the other hand it can be time consuming to generate the inequalities and also
to solve large LPs with many inequalities. This is a typical trade-off that one has to consider
when working with algorithms involving cutting planes, such as branch-and-cut. An appropriate
balance is usually found out experimentally.

3.4 Which valid inequalities are better?
In the previous sections of this chapter we have discussed how to define valid inequalities and
how to use them in order to generate only the most useful ones for our objective function in
the context of cutting plane algorithms. In this section we want to give some hints towards
which valid inequalities are “better”. Although there are many ways one could approach this
question and several properties one can consider to define good inequalities, we focus here on two
aspects, first, on the difficulty to solve the separation problem for a given family of inequalities,
and secondly on whether the inequalities are necessary to the description of our feasible integer
points or not.

3.4.1 Solving the separation problem
The separation problem has to be solved many times in a cutting plane algorithm (and even
more times if cutting planes are embeded in a branch-and-cut algorithm). Therefore, it is of best
interest to have separation problems that can be solved fast. Corresponding algorithms are called
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separation algorithms. Having fast separation algorithms becomes crucial when considering a
family F of exponentially many inequalities. Moreover, the separation problem can sometimes
be NP-hard itself, in which case heuristic approaches can be useful. Separation algorithms are a
very wide and important topic in itself. In our context we only examine an example for the stable
set problem.

Example 24 (Stable Set problem: separating odd cycle inequalities). Consider the Stable Set
problem on a graph G = (V, E). In Example 14 we introduced the odd cycle inequalities. As a
reminder, the odd cycle inequality associated to a cycle C (of odd length) is

�

i∈C
xi ≤ |C| − 1

2
(3.3)

and is valid for S T AB(G) = conv{x ∈ {0, 1}|V | | xi + x j ≤ 1, ∀(i, j) ∈ E}.
Imagine now that we have solved the LP

max
�

i∈V
xi

s. t. x ∈ ES T AB(G)

and that we have obtained a fractional optimal solution x∗. The key question that we want to
answer in this example is: How do we solve the separation problem? That is, how do we find an
inequality (3.3) that actually cuts off point x∗ or show that such an inequality does not exist?

A natural idea is to enumerate all possible odd cycles C in G and test the corresponding odd
cycle inequality on x∗. If we find an odd cycle inequality that is not satisfied by x∗, then we have
found our valid inequality. If for all C the odd cycle inequalities are satisfied, than we can assert
that no separating inequality exists in this family.

Pure cycle enumeration is not a good idea in practice, because we potentially have many
inequalities to test. However, for odd cyle inequalities, there exists a polynomial time separation
algorithm which is based on the shortest path problem. Summarizing, given x∗ as an input, we
want to

• either find an odd cycle C such that

�

i∈C
x∗i >

|C| − 1
2
,

• or show that for all odd cycle C the following inequality holds

�

i∈C
x∗i ≤

|C| − 1
2

This defines a whole new optimization problem: “Find a graph C = (V(C), E(C)) with
vertex set V(C) = {v1, . . . , v2k+1} of odd cardinality and edge set E(C) = {(vi, vi+1) | ∀i =
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1, . . . , 2k} ∪ {(v1, v2k+1)} and such that the value
�

i∈C x∗i − |C|−1
2 is maximized”. Equivalently

 max
C: odd cycle in G

�

i∈C
x∗i −
|C| − 1

2

 (3.10)

Note that now the unknown of our problem is C, while the x∗i are constants. Once we have
computed the optimal solution Copt of (3.10),

• if the optimal value
�

i∈Copt x∗i − |C
opt |−1

2 is strictly positive, then the separation algorithm
returns the inequality corresponding to Copt,

• else, no such inequality exists (all odd cycle inequalities are satisfied by x∗).

To rewrite our problem as a shortest path problem, we need to rewrite our problem as a
minimization problem and define weights for the edges of C. Problem (3.10) can be written as

 max
C: odd cycle in G

�

i∈C

�
x∗i −

1
2

�
+

1
2

 =
1
2

 max
C: odd cycle in G

�

i∈C

�
2x∗i − 1

�
+ 1



which is equivalent to

−1
2

 min
C: odd cycle in G

�

i∈C

�
1 − 2x∗i

� − 1

 (3.11)

We already have the problem written on minimization form, but the objective function associates
weights to vertices (to vertex i we associate weight 1 − 2x∗i ).

For this, we rewrite the objective function based on the observation that, on a cycle C,
�

i∈C

�
1 − 2x∗i

�
=
�

(i, j)∈E(C)

�
1 − x∗i − x∗j

�
,

because the weight of each vertex i ∈ C can be distributed half and half to both its adjacent edges
in the cycle.

j

i 1 − 2x∗i

1 − 2x∗j

1
2

1
2

1
2

1
2

1 − x∗i − x∗j
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In this way, we have assigned lengths li j = 1− x∗i − x∗j to the edges, and we want to find a shortest
path with respect to li j.

The last step consists in making sure that the edges that we select for our shortest path form
an odd cycle. For this, the shortest path will not directly be computed in G, but on an auxiliary
graph G� constructed as follows. Let G� = (V1 ∪ V2, E�) where V1 are the original vertices, that
we denote by i, and V2 is a copy of the original vertices, that we denote by i�. If (i, j) is an edge
in the original set of edges E, we construct a pair of edges (i, j�) and (i�, j) in G� as illustrated
below.

i i’

j j’

The length of edges (i, j�) and (i�, j) will be li j. For each i ∈ V, compute the shortest path in G�

from i to i�, and select the shortest among all these paths. This can be computed in polynomial
time and returns the shortest odd cycle in G, because since G� is bipartite, going from a vertex
in V1 to its copy in V2 requires an odd number of edges.

This shortest cycle is the optimal solution of (3.11). If its length is ≥ 1, then all odd cycle
inequalities are satisfied, else (if length < 1) the corresponding inequality is not satisfied and is
returned by the separation algorithm.

3.4.2 Strength of valid inequalities
In this section we try to assess the quality of valid inequalities in terms of their “strength”. We
will formalize the idea of strength during the section.

Note first that inequalities πT x ≤ π0 and λπT x ≤ λπ0 are identical for any λ > 0.

Definition 21. Given two valid inequalities for P ⊆ Rn
≥0, πT x ≤ π0 and µT x ≤ µ0, we say that

πT x ≤ π0 dominates µT x ≤ µ0 if there exists a λ > 0 such that π ≥ λµ and π0 ≤ λµ0, and
(π, π0) � (λµ, λµ0).

Observe that if πT x ≤ π0 dominates µT x ≤ µ0, then {x ∈ Rn
≥0 | πT x ≤ π0} ⊆ {x ∈ Rn

≥0 | µT x ≤
µ0}.
Definition 22. A valid inequality πT x ≤ π0 is redundant in the description of P ⊆ Rn

≥0, if there
exist k ≥ 1 valid inequalities πi T x ≤ πi

0, i = 1, . . . , k for P and weights ui > 0, i = 1, . . . , k such
that
��k

i=1 uiπ
i T
�

x ≤ �k
i=1 uiπ

i
0 dominates πT x ≤ π0.

Observe that {x ∈ Rn
≥0 | πi T x ≤ πi

0, for i = 1, . . . , k} ⊆ {x ∈ Rn
≥0 |
��k

i=1 uiπ
i T
�

x ≤ �k
i=1 uiπ

i
0} ⊆

{x ∈ Rn
≥0 | µT x ≤ µ0}. (Observe also that in the terminology of the exercises of Chapter 2 we said

that
��k

i=1 uiπ
i T
�

x ≤ �k
i=1 uiπ

i
0 was implied by πi T x ≤ πi

0 for i = 1, . . . , k.)
With these definitions, we can make our objective more precise: we would like to find de-

scriptions of integer sets and polyhedra that do not contain redundant inequalities, or in other
words, descriptions that contain only the necessary inequalities.
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Example 25. Consider P = {x ∈ R2
+ | 6x1 − x2 ≤ 9, 9x1 − 5x2 ≤ 6}. Inequality 5x1 − 2x2 ≤ 6 is

valid for P, but it is redundant (take multipliers u = 1
3 for both constraints defining P).

6x1 − x2 ≤ 9

9x1 − 5x2 ≤ 6

5x1 − 2x2 ≤ 6

5x1 − 2x2 ≤ 5

Example 26 (Stable Set). Consider the stable set problem on a complete graph G with 5 vertices.
Inequality x1+x2+x3+2x4+2x5 ≤ 4 is valid for S T AB(G), but redundant, because it is dominated
by the odd cycle inequality x1 + x2 + x3 + x4 + x5 ≤ 2 and the edge inequality x4 + x5 ≤ 1 (with
both multipliers u = 1). (Update: with a rhs of 3, as in the first version, dominance condition
(π, π0) � (λµ, λµ0) not satisfied.)

Remember that our objective is to find a best possible description of conv(X) of an integer set
X, avoiding the use of redundant inequalities. However, since conv(X) is not known in general, it
might be very difficult to check whether an inequality is redundant. In practice, if a formulation
P for X is known, we will avoid to add inequalities to P which are dominated by already existing
inequalities, which is much easier to check.

In order to better understand which inequalities are redundant and which are necessary, we
introduce some definitions and results in linear algebra and polyhedral theory.

Definition 23. A set of points x1, . . . , xk ∈ Rn is linearly independent if the unique solution of�k
i=1 λixi = 0 is λi = 0, for i = 1, . . . , k.

Remember that the maximum number of linearly independent points in Rn is n.

Definition 24. An affine combination of points x1, . . . , xk ∈ Rn is a linear combination
�k

i=1 λixi

with
�k

i=1 λi = 1.

Note that a convex combination (Definition 9) of points x1, . . . , xk ∈ Rn, is an affine combi-
nation with the additional requirement that λi ≥ 0 for i = 1, . . . , k.

Definition 25. A set of points x1, . . . , xk ∈ Rn is affinely independent if the unique solution of�k
i=1 λixi = 0 and

�k
i=1 λi = 0 is λi = 0, for i = 1, . . . , k.

Remember that the maximum number of affinely independent points in Rn is n + 1.
Note that linear independence implies affine independence but the converse is not true. The

following lemma is useful to check affine independence.

Lemma 1. The following statements are equivalent
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1. x1, . . . , xk ∈ Rn are affinely independent.

2. x2 − x1, . . . , xk − x1 ∈ Rn are linearly independent.

3. (x1, 1), . . . , (xk, 1) ∈ Rn+1 are linearly independent.

Definition 26. The dimension of a polyhedron P, denoted by dim(P), is the maximum number of
affinely independent points in P, minus one.

By convention, we set dim(∅) = −1. A polyhedron P ⊆ Rn is called full-dimensional if
dim(P) = n, or equivalently, if it contains n + 1 affinely independent points. Note that full-
dimensional polyhedra have the property that there is no equation ax = b satisfied at equality by
all points x ∈ P. Considering full-dimensional polyhedra simplifies the notions presented here
because of the following result.

Theorem 11. If P is a full-dimensional polyhedron, then it has a unique minimal description

P = {x ∈ Rn | aix ≤ bi for i = 1, . . . ,m}
where each inequality is unique (except for positive multiples), and where minimal means that
every inequality is necessary, that is, if for some i the corresponding inequality is removed, then
the resulting set is no longer P.

Therefore, for the sake of simplicity, from now on we limit ourselves to full-dimensional
polyhedra P ⊆ Rn.

Definition 27. A set F ⊆ P, F � ∅ is a face of P if there exists a valid inequality πT x ≤ π0 for P
such that F = {x ∈ P | πT x = π0}.

If F is a face of P with F = {x ∈ P | πT x = π0}, the valid inequality πT x ≤ π0 is said to
represent F.

Note that a face F is itself a polyhedron, and therefore it has a dimension.
The face F = ∅ (of dimension −1) and the face F = P (corresponding to the valid inequality

0T x ≤ 0) are called trivial faces, while all other faces (with dimensions between 0 and dim(P)−1)
are called proper or non-trivial faces.

Observation 7. Let F1, F2 be non-empty faces a polyhedron P ⊆ Rn

F1 = {x ∈ P | π1x = π1
0}

F2 = {x ∈ P | π2x = π2
0}

If F1 ⊂ F2 (that is if F1 is a proper face of the polyhedron F2), then dim(F1) < dim(F2).

Definition 28. F is a facet of P if it is a face of P and it has dimension dim(F) = dim(P) − 1.

This means that for full-dimensional polyhedra, a valid inequality πT x ≤ π0 defines a facet of
P if, and only if, there are n affinely independent points of P satisfying it at equality. Note also
that a face F is a facet if, and only if, it is not contained in any other face F � P.
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Theorem 12. If P is full-dimensional, a valid inequality πT x ≤ π0 is necessary in the description
of P if, and only if, it defines a facet.

The theorem above tells us that the inequalities that describe facets are the ones that we are
looking for, because they are not redundant in the description of conv(X).

We will illustrate the concepts above on two examples.

Example 27. Geometrical illustration of faces and facets. Consider the polyhedron P ⊂ R2

defined by inequalities
x1 ≤ 2

x1 + x2 ≤ 4

x1 + 2x2 ≤ 10

x1 + 2x2 ≤ 6

x1 + x2 ≥ 2

x1 ≥ 0

x2 ≥ 0

In the illustration of P below, it is clear that only inequalities x1 ≤ 2, x1+2x2 ≤ 6, x1+x2 ≥ 2,
and x1 ≥ 0 are necessary in the description of P.

x1 = 2

x1 + 2x2 = 6

x1 = 0

x1 + x2 = 2

x1 + x2 = 4

x1 + 2x2 = 10

x2 = 0 x1

x2

P

More formally, P is full-dimensional because the points (2, 0), (1, 1) and (2, 2) are contained in
P and are affinely independent.

• x1 ≤ 2 defines a facet of P because it contains (2, 0) and (2, 2), which are two affinely
independent points satisfying x1 ≤ 2 at equality.

• x1+2x2 ≤ 6 defines a facet of P because it contains (0, 3) and (2, 2), which are two affinely
independent points satisfying x1 ≤ 2 at equality.

• The same reasoning can be applied to the other facet-defining inequalities.
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• x1 + x2 ≤ 4 defines a face consisting of a single point of P, point (2, 2), therefore it is
redundant. An alternative reasoning is that inequalities x1 ≤ 2 and x1 + 2x2 ≤ 6 with
weights u = ( 1

2 ,
1
2 ) dominate x1 + x2 ≤ 4.

• The same reasoning can be applied to the other redundant inequalities.

Example 28. Stable Set problem. This example will be completed at the end of the lectures. (In
class exercise.)
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