Proposal for a linear program to solve the 3D Bin Packing Problem

Sets:

I set of items in one order
B set of boxes
O set of orders
Idea: To work with infinite boxes of each type create $|\mathbf{I}|$ many boxes of each type. Thus we will always have enough boxes of any type.

To reduce the computational complexity we only consider one order to be packed at a time. This is possible since items of different orders are not allowed to be packed in the same box.

For positioning we will consider a normal 3D coordinate system fixed at the front-bottom-left corner of a box. Furthermore all item coordinates will be anchored on their front-bottom-left corner.
Due to the picture this linear program will consider items with a \mathbf{y}-coordinate close to 0 to be in front any item with a higher \mathbf{y}-coordinate.

Variables:

$\mathbf{k}_{\mathbf{b}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if box $\mathbf{b} \in \mathbf{B}$ is used
$\mathbf{v}_{\mathbf{i}, \mathbf{b}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if item $\mathbf{i} \in \mathbf{I}$ is packed into box $\mathbf{b} \in \mathbf{B}$
$\mathrm{x}_{\mathbf{i}} \in \mathbb{N}_{>\mathbf{0}}$: \mathbf{x}-coordinate of item $\mathbf{i} \in \mathbf{I}$ within the box
$\mathbf{y}_{\mathbf{i}} \in \mathbb{N}_{>\mathbf{0}}: \mathbf{y}$-coordinate of item $\mathbf{i} \in \mathbf{I}$ within the box
$\mathbf{z}_{\mathbf{i}} \in \mathbb{N}_{>\mathbf{0}}: \mathbf{z}$-coordinate of item $\mathbf{i} \in \mathbf{I}$ within the box
$\mathbf{w}_{\mathbf{i}}^{\mathbf{x}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the width of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{x}-axis of the box
$\mathbf{w}_{\mathbf{i}}^{\mathbf{y}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the width of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{y}-axis of the box $\mathbf{w}_{\mathbf{i}}^{\mathbf{z}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the width of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{z}-axis of the box
$\mathbf{h}_{\mathbf{i}}^{\mathbf{x}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the height of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{x}-axis of the box $\mathbf{h}_{\mathbf{i}}^{\mathbf{y}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the height of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{y}-axis of the box $\mathbf{h}_{\mathbf{i}}^{\mathbf{Z}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the height of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{z}-axis of the box
$\mathbf{l}_{\mathbf{i}}^{\mathbf{x}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the length of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{x}-axis of the box
$\mathbf{l}_{\mathbf{i}}^{\mathrm{y}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the length of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{y}-axis of the box
$\mathbf{l}_{\mathbf{i}}^{\mathbf{z}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if the length of the item $\mathbf{i} \in \mathbf{I}$ is aligned to the \mathbf{z}-axis of the box
$\mathbf{a}_{\mathbf{i}, \mathbf{j}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if item $\mathbf{i} \in \mathbf{I}$ is on the left of item $\mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}$
$\mathbf{b}_{\mathbf{i}, \mathbf{j}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if item $\mathbf{i} \in \mathbf{I}$ is on the right of item $\mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}$
$\mathbf{c}_{\mathbf{i}, \mathbf{j}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if item $\mathbf{i} \in \mathbf{I}$ is in front item $\mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}$
$\mathbf{d}_{\mathbf{i}, \mathbf{j}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if item $\mathbf{i} \in \mathbf{I}$ is behind of item $\mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}$
$\mathbf{e}_{\mathbf{i}, \mathbf{j}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if item $\mathbf{i} \in \mathbf{I}$ is below item $\mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}$
$\mathbf{f}_{\mathbf{i}, \mathbf{j}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if item $\mathbf{i} \in \mathbf{I}$ is above item $\mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}$
$\mathbf{g}_{\mathbf{i}, \mathbf{j}} \in[\mathbf{0}, \mathbf{1}]=\mathbf{1}$ if item $\mathbf{i} \in \mathbf{I}$ is a different box than $\mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}$

Constants:

$\mathbf{p}_{\mathbf{b}} \in \mathbb{N}_{>\mathbf{0}}$: Width of box $\mathbf{b} \in \mathrm{B}$
$\mathbf{q}_{\mathrm{b}} \in \mathbb{N}_{>0}$: Height of box $\mathbf{b} \in \mathbf{B}$
$\mathbf{r}_{\mathbf{b}} \in \mathbb{N}_{>\mathbf{0}}$: Length of box $\mathbf{b} \in \mathbf{B}$
$\mathbf{s}_{\mathbf{i}} \in \mathbb{N}_{>0}:$ Width of item $\mathbf{i} \in \mathbf{I}$
$\mathbf{t}_{\mathbf{i}} \in \mathbb{N}_{>\mathbf{0}}$: Height of item $\mathbf{i} \in \mathbf{I}$
$\mathbf{u}_{\mathbf{i}} \in \mathbb{N}_{>\mathbf{0}}$: Length of item $\mathbf{i} \in \mathbf{I}$
M: Some \mathbf{M} with sufficient size. E.g. the highest dimension of the biggest box

Functions:

Objective Function:

$$
\min \sum_{\mathbf{b} \in \mathbf{B}} \mathbf{k}_{\mathbf{b}}
$$

subject to:

All items $\mathbf{i} \in \mathbf{I}$ have to be packed into a box $\mathbf{b} \in \mathbf{B}$:

$$
\sum_{\mathbf{b} \in \mathbf{B}} \mathbf{v}_{\mathbf{i}, \mathrm{b}}=\mathbf{1} \quad \forall \mathbf{i} \in \mathbf{I}
$$

Items $\mathbf{i} \in \mathbf{I}$ may only be packed into a box $\mathbf{b} \in \mathbf{B}$ if this box is used:

$$
\mathbf{v}_{\mathbf{i}, \mathbf{b}} \leq \mathbf{k}_{\mathbf{b}} \quad \forall \mathbf{i} \in \mathbf{I}, \forall \mathbf{b} \in \mathbf{B}
$$

Items in the same box are not allowed to overlap. Therefore we have to check their boarders:

$$
\begin{aligned}
& \mathbf{i} \in \mathbf{I} \text { is left of } \mathbf{j} \in \mathbf{I} \text { : } \\
& \mathrm{x}_{\mathrm{i}}+\mathrm{s}_{\mathrm{i}} \cdot \mathrm{w}_{\mathrm{i}}^{\mathrm{x}}+\mathrm{t}_{\mathrm{i}} \cdot \mathrm{~h}_{\mathrm{i}}^{\mathrm{x}}+\mathbf{u}_{\mathrm{i}} \cdot \mathrm{l}_{\mathrm{i}}^{\mathrm{x}} \leq \mathrm{x}_{\mathrm{j}}+\left(\mathbf{1}-\mathbf{a}_{\mathrm{ij}}\right) \cdot \mathbf{M} \quad \forall \mathrm{i}, \mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j} \\
& \mathbf{i} \in \mathbf{I} \text { is right of } \mathbf{j} \in \mathbf{I} \text { : } \\
& \mathrm{x}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}} \cdot \mathrm{w}_{\mathrm{j}}^{\mathrm{x}}+\mathrm{t}_{\mathrm{j}} \cdot \mathrm{~h}_{\mathrm{j}}^{\mathrm{x}}+\mathrm{u}_{\mathrm{j}} \cdot \mathrm{l}_{\mathrm{j}}^{\mathrm{x}} \leq \mathrm{x}_{\mathrm{i}}+\left(\mathbf{1}-\mathrm{b}_{\mathrm{ij}}\right) \cdot \mathrm{M} \quad \forall \mathrm{i}, \mathrm{j} \in \mathrm{I}, \mathbf{i} \neq \mathbf{j} \\
& \mathbf{i} \in \mathbf{I} \text { is in front of } \mathbf{j} \in \mathbf{I} \text { : } \\
& \mathbf{y}_{\mathrm{i}}+\mathrm{s}_{\mathrm{i}} \cdot \mathrm{w}_{\mathrm{i}}^{\mathrm{y}}+\mathrm{t}_{\mathbf{i}} \cdot \mathrm{h}_{\mathrm{i}}^{\mathrm{y}}+\mathbf{u}_{\mathrm{i}} \cdot \mathrm{l}_{\mathrm{i}}^{\mathrm{y}} \leq \mathrm{y}_{\mathbf{j}}+\left(\mathbf{1}-\mathbf{c}_{\mathbf{i j}}\right) \cdot \mathbf{M} \quad \forall \mathbf{i}, \mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j} \\
& \mathbf{i} \in \mathbf{I} \text { is behind of } \mathbf{j} \in \mathbf{I} \text { : } \\
& \mathbf{y}_{\mathbf{j}}+\mathrm{s}_{\mathrm{j}} \cdot \mathrm{w}_{\mathrm{j}}^{\mathrm{y}}+\mathrm{t}_{\mathrm{j}} \cdot \mathrm{~h}_{\mathrm{j}}^{\mathrm{y}}+\mathrm{u}_{\mathrm{j}} \cdot \mathrm{l}_{\mathrm{j}}^{\mathrm{y}} \leq \mathrm{y}_{\mathbf{i}}+\left(\mathbf{1}-\mathrm{d}_{\mathrm{ij}}\right) \cdot \mathrm{M} \quad \forall \mathbf{i}, \mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j} \\
& \mathbf{i} \in \mathbf{I} \text { is below of } \mathbf{j} \in \mathbf{I} \text { : } \\
& \mathrm{z}_{\mathrm{i}}+\mathrm{s}_{\mathrm{i}} \cdot \mathrm{w}_{\mathrm{i}}^{\mathrm{z}}+\mathrm{t}_{\mathrm{i}} \cdot \mathrm{~h}_{\mathrm{i}}^{\mathrm{z}}+\mathrm{u}_{\mathrm{i}} \cdot \mathrm{l}_{\mathrm{i}}^{\mathrm{z}} \leq \mathrm{z}_{\mathrm{j}}+\left(\mathbf{1}-\mathrm{e}_{\mathrm{ij}}\right) \cdot \mathrm{M} \quad \forall \mathrm{i}, \mathrm{j} \in \mathrm{I}, \mathbf{i} \neq \mathbf{j} \\
& \mathbf{i} \in \mathbf{I} \text { is above of } \mathbf{j} \in \mathbf{I} \text { : } \\
& \mathrm{z}_{\mathrm{j}}+\mathrm{s}_{\mathrm{j}} \cdot \mathrm{w}_{\mathrm{j}}^{\mathrm{z}}+\mathrm{t}_{\mathrm{j}} \cdot \mathbf{h}_{\mathrm{j}}^{\mathrm{z}}+\mathbf{u}_{\mathrm{j}} \cdot \mathrm{l}_{\mathrm{j}}^{\mathrm{Z}} \leq \mathrm{z}_{\mathrm{i}}+\left(\mathbf{1}-\mathrm{f}_{\mathrm{ij}}\right) \cdot \mathbf{M} \quad \forall \mathbf{i}, \mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}
\end{aligned}
$$

Any item must have at least one positional relation to any other item in the same box:

$$
\mathbf{a}_{\mathbf{i}, \mathbf{j}}+\mathbf{b}_{\mathbf{i}, \mathbf{j}}+\mathbf{c}_{\mathbf{i}, \mathbf{j}}+\mathrm{d}_{\mathbf{i}, \mathbf{j}}+\mathbf{e}_{\mathbf{i}, \mathbf{j}}+\mathrm{f}_{\mathbf{i}, \mathbf{j}} \geq \mathbf{1}-\mathrm{g}_{\mathbf{i}, \mathbf{j}} \quad \forall \mathbf{i}, \mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}
$$

If two items $i, j \in I$ are not in the same box $g_{i, j}$ must be 1 and 0 otherwise:

$$
\mathrm{g}_{\mathbf{i}, \mathbf{j}} \leq 0.5 \cdot\left(\sum_{\mathbf{b} \in \mathbf{B}} \operatorname{abs}\left(\mathbf{v}_{\mathbf{i}, \mathbf{b}}-\mathbf{v}_{\mathbf{j}, \mathbf{b}}\right)\right) \quad \forall \mathbf{i}, \mathbf{j} \in \mathbf{I}, \mathbf{i} \neq \mathbf{j}
$$

No item $\mathbf{i} \in \mathbf{I}$ may be packed over the boundaries of its package:
Width:

$$
\mathbf{x}_{\mathbf{i}}+\mathrm{s}_{\mathbf{i}} \cdot \mathbf{w}_{\mathbf{i}}^{\mathrm{x}}+\mathbf{t}_{\mathbf{i}} \cdot \mathbf{h}_{\mathbf{i}}^{\mathbf{x}}+\mathbf{u}_{\mathbf{i}} \cdot \mathrm{l}_{\mathbf{i}}^{\mathbf{x}} \leq \mathbf{p}_{\mathbf{b}}+\left(\mathbf{1}-\mathbf{v}_{\mathbf{i}, \mathbf{b}}\right) \cdot \mathbf{M} \quad \forall \mathbf{i} \in \mathbf{I}, \forall \mathbf{b} \in \mathbf{B}
$$

Height:

$$
\mathbf{y}_{\mathbf{i}}+\mathrm{s}_{\mathbf{i}} \cdot \mathbf{w}_{\mathbf{i}}^{\mathbf{y}}+\mathrm{t}_{\mathbf{i}} \cdot \mathbf{h}_{\mathbf{i}}^{\mathbf{y}}+\mathbf{u}_{\mathbf{i}} \cdot \mathbf{l}_{\mathbf{i}}^{\mathbf{y}} \leq \mathbf{q}_{\mathbf{b}}+\left(\mathbf{1}-\mathbf{v}_{\mathbf{i}, \mathbf{b}}\right) \cdot \mathbf{M} \quad \forall \mathbf{i} \in \mathbf{I}, \forall \mathbf{b} \in \mathbf{B}
$$

Length:

$$
\mathrm{z}_{\mathbf{i}}+\mathrm{s}_{\mathbf{i}} \cdot \mathbf{w}_{\mathbf{i}}^{\mathbf{z}}+\mathrm{t}_{\mathbf{i}} \cdot \mathbf{h}_{\mathrm{i}}^{\mathrm{z}}+\mathbf{u}_{\mathbf{i}} \cdot \mathrm{l}_{\mathrm{i}}^{\mathrm{z}} \leq \mathbf{r}_{\mathbf{b}}+\left(\mathbf{1}-\mathbf{v}_{\mathbf{i}, \mathbf{b}}\right) \cdot \mathbf{M} \quad \forall \mathbf{i} \in \mathbf{I}, \forall \mathbf{b} \in \mathbf{B}
$$

Only one packing orientation per Item $i \in I$ is possible:

$$
\begin{aligned}
& \mathbf{w}_{\mathrm{i}}^{\mathrm{x}}+\mathrm{w}_{\mathrm{i}}^{\mathrm{y}}+\mathrm{w}_{\mathrm{i}}^{\mathrm{z}}=1 \quad \forall \mathrm{i} \in \mathrm{I} \\
& h_{i}^{x}+h_{i}^{y}+h_{i}^{z}=1 \quad \forall i \in I \\
& l_{i}^{\mathrm{X}}+\mathrm{l}_{\mathrm{i}}^{\mathrm{y}}+\mathrm{l}_{\mathrm{i}}^{\mathrm{Z}}=\mathbf{1} \quad \forall \mathrm{i} \in \mathrm{I} \\
& \mathbf{w}_{\mathrm{i}}^{\mathrm{x}}+\mathbf{h}_{\mathrm{i}}^{\mathrm{x}}+\mathrm{l}_{\mathrm{i}}^{\mathrm{x}}=\mathbf{1} \quad \forall \mathrm{i} \in \mathrm{I} \\
& \mathrm{w}_{\mathrm{i}}^{\mathrm{y}}+\mathrm{h}_{\mathrm{i}}^{\mathrm{y}}+\mathrm{l}_{\mathrm{i}}^{\mathrm{y}}=\mathbf{1} \quad \forall \mathrm{i} \in \mathrm{I} \\
& w_{i}^{z}+h_{i}^{z}+l_{i}^{z}=1 \quad \forall i \in I
\end{aligned}
$$

Constraints to position the items within each box were inspired by N. Z. Hu, H. L. Li and J. F. Tsai, "Solving Packing Problems by a Distributed Global Optimization Algorithm", 2012

